36 research outputs found

    A new tool to assess Clinical Diversity In Meta‐analyses (CDIM) of interventions

    Get PDF
    OBJECTIVE: To develop and validate Clinical Diversity In Meta-analyses (CDIM), a new tool for assessing clinical diversity between trials in meta-analyses of interventions.STUDY DESIGN AND SETTING: The development of CDIM was based on consensus work informed by empirical literature and expertise. We drafted the CDIM tool, refined it, and validated CDIM for interrater scale reliability and agreement in three groups.RESULTS: CDIM measures clinical diversity on a scale that includes four domains with 11 items overall: setting (time of conduct/country development status/units type); population (age, sex, patient inclusion criteria/baseline disease severity, comorbidities); interventions (intervention intensity/strength/duration of intervention, timing, control intervention, cointerventions); and outcome (definition of outcome, timing of outcome assessment). The CDIM is completed in two steps: first two authors independently assess clinical diversity in the four domains. Second, after agreeing upon scores of individual items a consensus score is achieved. Interrater scale reliability and agreement ranged from moderate to almost perfect depending on the type of raters.CONCLUSION: CDIM is the first tool developed for assessing clinical diversity in meta-analyses of interventions. We found CDIM to be a reliable tool for assessing clinical diversity among trials in meta-analysis.</p

    Platform trials

    Get PDF
    Platform trials focus on the perpetual testing of many interventions in a disease or a setting. These trials have lasting organizational, administrative, data, analytic, and operational frameworks making them highly efficient. The use of adaptation often increases the probabilities of allocating participants to better interventions and obtaining conclusive results. The COVID-19 pandemic showed the potential of platform trials as a fast and valid way to improved treatments. This review gives an overview of key concepts and elements using the Intensive Care Platform Trial (INCEPT) as an example.</p

    In the Laboratory and during Free-Flight: Old Honey Bees Reveal Learning and Extinction Deficits that Mirror Mammalian Functional Decline

    Get PDF
    Loss of brain function is one of the most negative and feared aspects of aging. Studies of invertebrates have taught us much about the physiology of aging and how this progression may be slowed. Yet, how aging affects complex brain functions, e.g., the ability to acquire new memory when previous experience is no longer valid, is an almost exclusive question of studies in humans and mammalian models. In these systems, age related cognitive disorders are assessed through composite paradigms that test different performance tasks in the same individual. Such studies could demonstrate that afflicted individuals show the loss of several and often-diverse memory faculties, and that performance usually varies more between aged individuals, as compared to conspecifics from younger groups. No comparable composite surveying approaches are established yet for invertebrate models in aging research. Here we test whether an insect can share patterns of decline similar to those that are commonly observed during mammalian brain aging. Using honey bees, we combine restrained learning with free-flight assays. We demonstrate that reduced olfactory learning performance correlates with a reduced ability to extinguish the spatial memory of an abandoned nest location (spatial memory extinction). Adding to this, we show that learning performance is more variable in old honey bees. Taken together, our findings point to generic features of brain aging and provide the prerequisites to model individual aspects of learning dysfunction with insect models

    RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions

    Get PDF
    BACKGROUND: Biofilm development, specifically the fundamentally adaptive switch from acute to chronic infection phenotypes, requires global regulators and small non-coding regulatory RNAs (sRNAs). This work utilized RNA-sequencing (RNA-seq) to detect sRNAs differentially expressed in Pseudomonas aeruginosa biofilm versus planktonic state. RESULTS: A computational algorithm was devised to detect and categorize sRNAs into 5 types: intergenic, intragenic, 5′-UTR, 3′-UTR, and antisense. Here we report a novel RsmY/RsmZ-type sRNA, termed RsmW, in P. aeruginosa up-transcribed in biofilm versus planktonic growth. RNA-Seq, 5’-RACE and Mfold predictions suggest RsmW has a secondary structure with 3 of 7 GGA motifs located on outer stem loops. Northern blot revealed two RsmW binding bands of 400 and 120 bases, suggesting RsmW is derived from the 3’-UTR of the upstream hypothetical gene, PA4570. RsmW expression is elevated in late stationary versus logarithmic growth phase in PB minimal media, at higher temperatures (37°C versus 28°C), and in both gacA and rhlR transposon mutants versus wild-type. RsmW specifically binds to RsmA protein in vitro and restores biofilm production and reduces swarming in an rsmY/rsmZ double mutant. PA4570 weakly resembles an RsmA/RsmN homolog having 49% and 51% similarity, and 16% and 17% identity to RsmA and RsmN amino acid sequences, respectively. PA4570 was unable to restore biofilm and swarming phenotypes in ΔrsmA deficient strains. CONCLUSION: Collectively, our study reveals an interesting theme regarding another sRNA regulator of the Rsm system and further unravels the complexities regulating adaptive responses for Pseudomonas species

    Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

    Get PDF
    Objective To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. Design 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. Results 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p&lt;0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p&lt;0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Conclusion Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation

    Amyloid Formation by the Pro-Inflammatory S100A8/A9 Proteins in the Ageing Prostate

    Get PDF
    BACKGROUND: The conversion of soluble peptides and proteins into polymeric amyloid structures is a hallmark of many age-related degenerative disorders, including Alzheimer's disease, type II diabetes and a variety of systemic amyloidoses. We report here that amyloid formation is linked to another major age-related phenomenon--prostate tissue remodelling in middle-aged and elderly men. METHODOLOGY/PRINCIPAL FINDINGS: By using multidisciplinary analysis of corpora amylacea inclusions in prostate glands of patients diagnosed with prostate cancer we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. In prostate protease rich environment the amyloids are stabilized by dystrophic calcification and lateral thickening. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro under native and acidic conditions and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. CONCLUSIONS/SIGNIFICANCE: These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. The results provide strong support for the prediction that the generic ability of polypeptide chains to convert into amyloids could lead to their involvement in an increasing number of otherwise apparently unrelated diseases, particularly those associated with ageing.Original Publication:Kiran Yanamandra, Oleg Alexeyev, Vladimir Zamotin, Vaibhav Srivastava, Andrei Shchukarev, Ann-Christin Brorsson, Gian Gaetano Tartaglia, Thomas Vogl, Rakez Kayed, Gunnar Wingsle, Jan Olsson, Christopher M Dobson, Anders Bergh, Fredrik Elgh and Ludmilla A Morozova-Roche, Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate., 2009, PloS one, (4), 5, e5562.http://dx.doi.org/10.1371/journal.pone.000556

    The time scale of recombination rate evolution in great apes

    Get PDF
    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- And between-species genome-wide recombination rate variation in several close relatives
    corecore