47 research outputs found

    Exploring light supersymmetry with GAMBIT

    Full text link
    I summarize a recent study by the GAMBIT Collaboration in which we investigated the combined collider constraints on the chargino and neutralino sector of the Minimal Supersymmetric Standard Model. Through a large fit using GAMBIT we found that current ATLAS and CMS results with 36 fb−1^{-1} of 13 TeV LHC collision data do not provide a general constraint on the lightest neutralino and chargino masses. Further, we found that a pattern of excesses in some of the LHC analyses can be fit in a subset of the model parameter space. The excess has an estimated local significance of 3.3σ\sigma based on the 13 TeV results alone, and 2.9σ\sigma when 13 TeV and 8 TeV results are combined.Comment: 4 pages, 1 figure, contribution to the 2019 QCD session of the 54th Rencontres de Morion

    Signal mixture estimation for degenerate heavy Higgses using a deep neural network

    Get PDF
    If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ~20% improvement in the estimate uncertainty.Comment: v2, 12 pages, 7 figures, published in EPJ

    Global fits of simplified models for dark matter with GAMBIT – I. Scalar and fermionic models with s-channel vector mediators

    Get PDF
    Simplified models provide a useful way to study the impacts of a small number of new particles on experimental observables and the interplay of those observables, without the need to construct an underlying theory. In this study, we perform global fits of simplified dark matter models with GAMBIT using an up-to-date set of likelihoods for indirect detection, direct detection and collider searches. We investigate models in which a scalar or fermionic dark matter candidate couples to quarks via an s-channel vector mediator. Large parts of parameter space survive for each model. In the case of Dirac or Majorana fermion dark matter, excesses in LHC monojet searches and relic density limits tend to prefer the resonance region, where the dark matter has approximately half the mass of the mediator. A combination of vector and axial-vector couplings to the Dirac candidate also leads to competing constraints from direct detection and unitarity violation

    Combined collider constraints on neutralinos and charginos

    Get PDF
    Searches for supersymmetric electroweakinos have entered a crucial phase, as the integrated luminosity of the Large Hadron Collider is now high enough to compensate for their weak production cross-sections. Working in a framework where the neutralinos and charginos are the only light sparticles in the Minimal Supersymmetric Standard Model, we use gambit to perform a detailed likelihood analysis of the electroweakino sector. We focus on the impacts of recent ATLAS and CMS searches with 36 fb−1^{-1} of 13 TeV proton-proton collision data. We also include constraints from LEP and invisible decays of the ZZ and Higgs bosons. Under the background-only hypothesis, we show that current LHC searches do not robustly exclude any range of neutralino or chargino masses. However, a pattern of excesses in several LHC analyses points towards a possible signal, with neutralino masses of (mχ~10,mχ~20,mχ~30,mχ~40)(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0}) = (8-155, 103-260, 130-473, 219-502) GeV and chargino masses of (mχ~1±,mχ~2±)(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}}) = (104-259, 224-507) GeV at the 95% confidence level. The lightest neutralino is mostly bino, with a possible modest Higgsino or wino component. We find that this excess has a combined local significance of 3.3σ3.3\sigma, subject to a number of cautions. If one includes LHC searches for charginos and neutralinos conducted with 8 TeV proton-proton collision data, the local significance is lowered to 2.9σ\sigma. We briefly consider the implications for dark matter, finding that the correct relic density can be obtained through the Higgs-funnel and ZZ-funnel mechanisms, even assuming that all other sparticles are decoupled. All samples, gambit input files and best-fit models from this study are available on Zenodo.Comment: 38 pages, 16 figures, v3 is the version accepted by EPJ

    ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods

    Get PDF
    We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique to ColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics

    Combined collider constraints on neutralinos and charginos

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Searches for supersymmetric electroweakinos have entered a crucial phase, as the integrated luminosity of the Large Hadron Collider is now high enough to compensate for their weak production cross-sections. Working in a framework where the neutralinos and charginos are the only light sparticles in the Minimal Supersymmetric Standard Model, we use GAMBIT to perform a detailed likelihood analysis of the electroweakino sector. We focus on the impacts of recent ATLAS and CMS searches with of 13 TeV proton-proton collision data. We also include constraints from LEP and invisible decays of the Z and Higgs bosons. Under the background-only hypothesis, we show that current LHC searches do not robustly exclude any range of neutralino or chargino masses. However, a pattern of excesses in several LHC analyses points towards a possible signal, with neutralino masses of = (8–155, 103–260, 130–473, 219–502) GeV and chargino masses of = (104–259, 224–507) GeV at the 95% confidence level. The lightest neutralino is mostly bino, with a possible modest Higgsino or wino component. We find that this excess has a combined local significance of 3.3, subject to a number of cautions. If one includes LHC searches for charginos and neutralinos conducted with 8 TeV proton-proton collision data, the local significance is lowered to 2.9. We briefly consider the implications for dark matter, finding that the correct relic density can be obtained through the Higgs-funnel and Z-funnel mechanisms, even assuming that all other sparticles are decoupled. All samples, GAMBIT input files and best-fit models from this study are available on Zenodo

    Collider constraints on electroweakinos in the presence of a light gravitino

    Get PDF
    Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos (neutralinos and charginos) as the only other light new states. We combine 15 ATLAS and 12 CMS searches at 13 TeV, along with a large collection of ATLAS and CMS measurements of Standard Model signatures. This model, which we refer to as the G~-EWMSSM, exhibits quite varied collider phenomenology due to its many permitted electroweakino production processes and decay modes. Characteristic G~-EWMSSM signal events have two or more Standard Model bosons and missing energy due to the escaping gravitinos. While much of the G~-EWMSSM parameter space is excluded, we find several viable parameter regions that predict phenomenologically rich scenarios with multiple neutralinos and charginos within the kinematic reach of the LHC during Run 3, or the High Luminosity LHC. In particular, we identify scenarios with Higgsino-dominated electroweakinos as light as 140 GeV that are consistent with our combined set of collider searches and measurements. The full set of G~-EWMSSM parameter samples and GAMBIT input files generated for this work is available via Zenodo

    Collider constraints on electroweakinos in the presence of a light gravitino

    Get PDF
    Using the GAMBIT global fitting framework, we constrain the MSSM with an eV-scale gravitino as the lightest supersymmetric particle, and the six electroweakinos (neutralinos and charginos) as the only other light new states. We combine 15 ATLAS and 12 CMS searches at 13 TeV, along with a large collection of ATLAS and CMS measurements of Standard Model signatures. This model, which we refer to as the G~-EWMSSM, exhibits quite varied collider phenomenology due to its many permitted electroweakino production processes and decay modes. Characteristic G~-EWMSSM signal events have two or more Standard Model bosons and missing energy due to the escaping gravitinos. While much of the G~-EWMSSM parameter space is excluded, we find several viable parameter regions that predict phenomenologically rich scenarios with multiple neutralinos and charginos within the kinematic reach of the LHC during Run 3, or the High Luminosity LHC. In particular, we identify scenarios with Higgsino-dominated electroweakinos as light as 140 GeV that are consistent with our combined set of collider searches and measurements. The full set of G~-EWMSSM parameter samples and GAMBIT input files generated for this work is available via Zenodo
    corecore