12,651 research outputs found

    Tomographic reconstruction of quantum correlations in excited Bose-Einstein condensates

    Full text link
    We propose to use quantum tomography to characterize the state of a perturbed Bose-Einstein condensate. We assume knowledge of the number of particles in the zero-wave number mode and of density distributions in space at different times, and we treat the condensate in the Bogoliubov approximation. For states that can be treated with the Gross-Pitaevskii equation, we find that the reconstructed density operator gives excellent predictions of the second moments of the atomic creation- and annihilation operators, including the one-body density matrix. Additional inclusion of the momentum distribution at one point of time enables somewhat reliable predictions to be made for the second moments for mixed states, making it possible to distinguish between coherent and thermal perturbations of the condensate. Finally, we find that with observation of the zero-wave number mode's anomalous second moment the reconstructed density operator gives reliable predictions of the second moments of locally amplitude squeezed states.Comment: 12 pages, 7 figure

    Constant net-time headway as key mechanism behind pedestrian flow dynamics

    Full text link
    We show that keeping a constant lower limit on the net-time headway is the key mechanism behind the dynamics of pedestrian streams. There is a large variety in flow and speed as functions of density for empirical data of pedestrian streams, obtained from studies in different countries. The net-time headway however, stays approximately constant over all these different data sets. By using this fact, we demonstrate how the underlying dynamics of pedestrian crowds, naturally follows from local interactions. This means that there is no need to come up with an arbitrary fit function (with arbitrary fit parameters) as has traditionally been done. Further, by using not only the average density values, but the variance as well, we show how the recently reported stop-and-go waves [Helbing et al., Physical Review E, 75, 046109] emerge when local density variations take values exceeding a certain maximum global (average) density, which makes pedestrians stop.Comment: 7 pages, 7 figure

    Detecting metal-rich intermediate-age globular clusters in NGC4570 using K-band photometry

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0093-8Globular cluster systems (GCSs) of most early-type galaxies feature two peaks in their optical colour distributions. Blue-peak globular clusters (GCs) are believed to be old and metal-poor, whereas the ages, metallicities, and the origin of the red-peak GCs are still being debated. We obtained deep K-band photometry and combined it with Hubble Space Telescope observations in g and z to yield a full spectral energy distribution from the optical to the near-infrared. This now allows us to break the age–metallicity degeneracy. We used our evolutionary synthesis models galev for star clusters to compute a large grid of models with different metallicities and a wide range of ages. Comparing these models to our observations revealed a large population of intermediate-age (1–3 Gyr) and metal-rich (≈solar-metallicity) GCs, that will give us further insights into the formation history of this galaxy.Peer reviewe

    Multiadaptive Galerkin Methods for ODEs III: A Priori Error Estimates

    Full text link
    The multiadaptive continuous/discontinuous Galerkin methods mcG(q) and mdG(q) for the numerical solution of initial value problems for ordinary differential equations are based on piecewise polynomial approximation of degree q on partitions in time with time steps which may vary for different components of the computed solution. In this paper, we prove general order a priori error estimates for the mcG(q) and mdG(q) methods. To prove the error estimates, we represent the error in terms of a discrete dual solution and the residual of an interpolant of the exact solution. The estimates then follow from interpolation estimates, together with stability estimates for the discrete dual solution

    X-ray Halos and Large Grains in the Diffuse Interstellar Medium

    Get PDF
    Recent observations with dust detectors on board the interplanetary spacecraft Ulysses and Galileo have recorded a substantial flux of large interstellar grains with radii between 0.25 and 2.0 mu entering the solar system from the local interstellar cloud. The most commonly used interstellar grain size distribution is characterized by a a^-3.5 power law in grain radii a, and extends to a maximum grain radius of 0.25 mu. The extension of the interstellar grain size distribution to such large radii will have a major effect on the median grain size, and on the amount of mass needed to be tied up in dust for a given visual optical depth. It is therefore important to investigate whether this population of larger dust particles prevails in the general interstellar medium, or if it is merely a local phenomenon. The presence of large interstellar grains can be mainly inferred from their effect on the intensity and radial profiles of scattering halos around X-ray sources. In this paper we examine the grain size distribution that gives rise to the X-ray halo around Nova Cygni 1992. The results of our study confirm the need to extend the interstellar grain size distribution in the direction of this source to and possibly beyond 2.0 mu. The model that gives the best fit to the halo data is characterized by: (1) a grain size distribution that follows an a^-3.5 power law up to 0.50 mu, followed by an a^-4.0 extension from 0.50 mu to 2.0 mu; and (2) silicate and graphite (carbon) dust-to-gas mass ratios of 0.0044 and 0.0022, respectively, consistent with solar abundances constraints. Additional observations of X-ray halos probing other spatial directions are badly needed to test the general validity of this result.Comment: 17 pages, incl. 1 figure, accepted for publ. by ApJ Letter

    Variational ground states of 2D antiferromagnets in the valence bond basis

    Full text link
    We study a variational wave function for the ground state of the two-dimensional S=1/2 Heisenberg antiferromagnet in the valence bond basis. The expansion coefficients are products of amplitudes h(x,y) for valence bonds connecting spins separated by (x,y) lattice spacings. In contrast to previous studies, in which a functional form for h(x,y) was assumed, we here optimize all the amplitudes for lattices with up to 32*32 spins. We use two different schemes for optimizing the amplitudes; a Newton/conjugate-gradient method and a stochastic method which requires only the signs of the first derivatives of the energy. The latter method performs significantly better. The energy for large systems deviates by only approx. 0.06% from its exact value (calculated using unbiased quantum Monte Carlo simulations). The spin correlations are also well reproduced, falling approx. 2% below the exact ones at long distances. The amplitudes h(r) for valence bonds of long length r decay as 1/r^3. We also discuss some results for small frustrated lattices.Comment: v2: 8 pages, 5 figures, significantly expanded, new optimization method, improved result

    Challenging claims in the study of migratory birds and climate change

    Get PDF
    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (‘consensus view’) for a claim increased and between-researcher variability in support (‘expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies

    The Impact of Tillage System for Small-Grain Pasture Establishment on the Performance of Growing Beef Calves in Arkansas

    Get PDF
    In the United States, governmental regulations mandate the improvement of farming practices to improve environmental quality. There is a requirement to reduce the siltation of waterways, soil carbon losses, and nutrient runoff along the Mississippi River Delta. The use of small-grain forages by grazing cattle offers real opportunities to produce high-quality forage for cattle production during the winter and spring months. No-till and reduced tillage practices developed primarily for grain production may offer environmental and economic solutions for both grain farmers and cattle producers. Producers are slow to adopt conservation tillage practices because of a perceived risk of reduced production. The objective of this project was to compare conventional tillage to reduced tillage and no-till systems for production of small-grain forage for grazing livestock

    Delocalization power of global unitary operations on quantum information

    Full text link
    We investigate how originally localized two pieces of quantum information represented by a tensor product of two unknown qudit states are delocalized by performing two-qudit global unitary operations. To characterize the delocalization power of global unitary operations on quantum information, we analyze the necessary and sufficient condition to deterministically relocalize one of the two pieces of quantum information to its original Hilbert space by using only LOCC. We prove that this LOCC one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent to a controlled-unitary operation. The delocalization power and the entangling power characterize different non-local properties of global unitary operations.Comment: 14 pages, 1 figur

    Ground state of the random-bond spin-1 Heisenberg chain

    Full text link
    Stochastic series expansion quantum Monte Carlo is used to study the ground state of the antiferromagnetic spin-1 Heisenberg chain with bond disorder. Typical spin- and string-correlations functions behave in accordance with real-space renormalization group predictions for the random-singlet phase. The average string-correlation function decays algebraically with an exponent of -0.378(6), in very good agreement with the prediction of −(3−5)/2≃−0.382-(3-\sqrt{5})/2\simeq -0.382, while the average spin-correlation function is found to decay with an exponent of about -1, quite different from the expected value of -2. By implementing the concept of directed loops for the spin-1 chain we show that autocorrelation times can be reduced by up to two orders of magnitude.Comment: 9 pages, 10 figure
    • 

    corecore