16 research outputs found

    Examination involving students as peer examiners

    Full text link

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo

    Medical programme.

    No full text
    Examination involving students as peer examiner

    Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells

    No full text
    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material

    Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages

    No full text
    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. Lately, wear particles generated from traffic have been recognized to be a major contributing source to the overall particle load, especially in the Nordic countries were studded tires are used. In this work, we investigated the inflammatory effect of PM10 generated from the wear of studded tires on two different types of pavement. As comparison, we also investigated PM10 from a traffic-intensive street, a subway station, and diesel exhaust particles (DEP). Human monocyte-derived macrophages, nasal epithelial cells (RPMI 2650), and bronchial epithelial cells (BEAS-2B) were exposed to the different types of particles, and the secretion of IL-6, IL-8, IL-10, and TNF-alpha into the culture medium was measured. The results show a significant release of cytokines from macrophages after exposure for all types of particles. When particles generated from asphalt/granite pavement were compared to asphalt/quartzite pavement, the granite pavement had a significantly higher capacity to induce the release of cytokines. The granite pavement particles induced cytokine release at the same magnitude as the street particles did, which was higher than what particles from both a subway station and DEP did. Exposure of epithelial cells to PM10 resulted in a significant increase of TNF-alpha secreted from BEAS-2B cells for all types of particles used (DEP was not tested), and the highest levels were induced by subway particles. None of the particle types were able to evoke detectable cytokine release from RPMI 2650 cells. The results indicate that PM10 generated by the wear of studded tires on the street surface is a large contributor to the cytokine-releasing ability of particles in traffic-intensive areas and that the type of pavement used is important for the level of this contribution. Furthermore, the airway inflammatory potential of wear particles from tires and pavement might be of a greater magnitude than that of DEP

    Traffic-generated emissions of ultrafine particles from pavement-tire interface

    No full text
    In a road simulator study, a significant source of sub-micrometer fine particles produced by the road-tire interface was observed. Since the particle size distribution and source strength is dependent on the type of tire used, it is likely that these particles largely originate from the tires, and not the road pavement. The particles consisted most likely of mineral oils from the softening filler and fragments of the carbon-reinforcing filler material (soot agglomerates). This identification was based on transmission electron microscopy studies of collected ultrafine wear particles and on-line thermal treatment using a thermodesorber. The mean particle number diameters were between 15-50 nm, similar to those found in light duty vehicle (LDV) tail-pipe exhaust. A simple box model approach was used to estimate emission factors in the size interval 15-700 nm. The emission factors increased with increasing vehicle speed, and varied between 3.7 x 10(11) and 3.2 x 10(12) particles vehicle(-1) km(-1) at speeds of 50 and 70 km h(-1). This corresponds to between 0.1-1% of tail-pipe emissions in real-world emission studies at similar speeds from a fleet of LDV with 95% gasoline and 5% diesel-fueled cars. The emission factors for particles originating from the road-tire interface were, however, similar in magnitude to particle number emission factors from liquefied petroleum gas-powered vehicles derived in test bench studies in Australia 2005. Thus the road-tire interface may be a significant contributor to particle emissions from ultraclean vehicles. (c) 2005 Elsevier Ltd. All rights reserved

    Professional caregivers' perceptions of providing information to parents of children with cancer

    No full text
    Information has been described as a critical part of the care for parents of children with cancer, but not much is known about how caregivers makes decisions about informing parents. This study aims to illuminate professional caregivers' perceptions of providing information to parents of children with cancer. Twenty caregivers at a Swedish pediatric oncology ward participated in four focus group interviews. The interviews were transcribed verbatim and subjected to qualitative content analysis. Two themes were found: Matching the amount of information to the parents' needs concerned situations where the amount of information provided according to the caregivers' assessment is deemed too small, appropriate, or too large. Navigating through a vague structure dealt with a disrupted setting, unclear responsibilities within the team, difficult timing, unintelligible information, and underused tools for communication. Implications for intervention development are discussed
    corecore