503 research outputs found

    Global analysis of mRNA stability in the archaeon Sulfolobus

    Get PDF
    BACKGROUND: Transcript half-lives differ between organisms, and between groups of genes within the same organism. The mechanisms underlying these differences are not clear, nor are the biochemical properties that determine the stability of a transcript. To address these issues, genome-wide mRNA decay studies have been conducted in eukaryotes and bacteria. In contrast, relatively little is known about RNA stability in the third domain of life, Archaea. Here, we present a microarray-based analysis of mRNA half-lives in the hyperthermophilic crenarchaea Sulfolobus solfataricus and Sulfolobus acidocaldarius, constituting the first genome-wide study of RNA decay in archaea. RESULTS: The two transcriptomes displayed similar half-life distributions, with medians of about five minutes. Growth-related genes, such as those involved in transcription, translation and energy production, were over-represented among unstable transcripts, whereas uncharacterized genes were over-represented among the most stable. Half-life was negatively correlated with transcript abundance and, unlike the situation in other organisms, also negatively correlated with transcript length. CONCLUSION: The mRNA half-life distribution of Sulfolobus species is similar to those of much faster growing bacteria, contrasting with the earlier observation that median mRNA half-life is proportional to the minimal length of the cell cycle. Instead, short half-lives may be a general feature of prokaryotic transcriptomes, possibly related to the absence of a nucleus and/or more limited post-transcriptional regulatory mechanisms. The pattern of growth-related transcripts being among the least stable in Sulfolobus may also indicate that the short half-lives reflect a necessity to rapidly reprogram gene expression upon sudden changes in environmental conditions

    Phylogenetic Signals of Salinity and Season in Bacterial Community Composition Across the Salinity Gradient of the Baltic Sea

    Get PDF
    Understanding the key processes that control bacterial community composition has enabled predictions of bacterial distribution and function within ecosystems. In this study, we used the Baltic Sea as a model system to quantify the phylogenetic signal of salinity and season with respect to bacterioplankton community composition. The abundances of 16S rRNA gene amplicon sequencing reads were analyzed from samples obtained from similar geographic locations in July and February along a brackish to marine salinity gradient in the Baltic Sea. While there was no distinct pattern of bacterial richness at different salinities, the number of bacterial phylotypes in winter was significantly higher than in summer. Bacterial community composition in brackish vs. marine conditions, and in July vs. February was significantly different. Non-metric multidimensional scaling showed that bacterial community composition was primarily separated according to salinity and secondly according to seasonal differences at all taxonomic ranks tested. Similarly, quantitative phylogenetic clustering implicated a phylogenetic signal for both salinity and seasonality. Our results support that global patterns of bacterial community composition with respect to salinity and season are the result of phylogenetically clustered ecological preferences with stronger imprints from salinity

    Replication-biased genome organisation in the crenarchaeon Sulfolobus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Species of the crenarchaeon <it>Sulfolobus </it>harbour three replication origins in their single circular chromosome that are synchronously initiated during replication.</p> <p>Results</p> <p>We demonstrate that global gene expression in two <it>Sulfolobus </it>species is highly biased, such that early replicating genome regions are more highly expressed at all three origins. The bias by far exceeds what would be anticipated by gene dosage effects alone. In addition, early replicating regions are denser in archaeal core genes (enriched in essential functions), display lower intergenic distances, and are devoid of mobile genetic elements.</p> <p>Conclusion</p> <p>The strong replication-biased structuring of the <it>Sulfolobus </it>chromosome implies that the multiple replication origins serve purposes other than simply shortening the time required for replication. The higher-level chromosomal organisation could be of importance for minimizing the impact of DNA damage, and may also be linked to transcriptional regulation.</p

    Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity

    Get PDF
    The crossing of environmental barriers poses major adaptive challenges. Rareness of freshwater-marine transi-tions separates the bacterial communities, but how these are related to brackish counterparts remains elusive, as do the molecular adaptations facilitating cross-biome transitions. We conducted large-scale phylogenomic analysis of freshwater, brackish, and marine quality-filtered metagenome-assembled genomes (11,248). Average nucleotide identity analyses showed that bacterial species rarely existed in multiple biomes. In contrast, distinct brackish basins cohosted numerous species, but their intraspecific population structures displayed clear signs of geographic separation. We further identified the most recent cross-biome transitions, which were rare, ancient, and most commonly directed toward the brackish biome. Transitions were accompanied by systematic changes in amino acid composition and isoelectric point distributions of inferred proteomes, which evolved over millions of years, as well as convergent gains or losses of specific gene functions. Therefore, adaptive chal-lenges entailing proteome reorganization and specific changes in gene content constrains the cross-biome tran-sitions, resulting in species-level separation between aquatic biomes

    Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and Gut Microbiome

    Get PDF
    Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four-year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance

    Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing

    Get PDF
    Microbial ecology as a scientific field is fundamentally driven by technological advance. The past decade's revolution in DNA sequencing cost and throughput has made it possible for most research groups to map microbial community composition in environments of interest. However, the computational and statistical methodology required to analyse this kind of data is often not part of the biologist training. In this review, we give a historical perspective on the use of sequencing data in microbial ecology and restate the current need for this method; but also highlight the major caveats with standard practices for handling these data, from sample collection and library preparation to statistical analysis. Further, we outline the main new analytical tools that have been developed in the past few years to bypass these caveats, as well as highlight the major requirements of common statistical practices and the extent to which they are applicable to microbial data. Besides delving into the meaning of select alpha- and beta-diversity measures, we give special consideration to techniques for finding the main drivers of community dissimilarity and for interaction network construction. While every project design has specific needs, this review should serve as a starting point for considering what options are available

    Performance of a 70-mer oligonucleotide microarray for genotyping of Campylobacter jejuni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>is widespread in the environment and is the major cause of bacterial gastroenteritis in humans. In the present study we use microarray-based comparative genomic hybridizations (CGH), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to analyze closely related <it>C. jejuni </it>isolates from chicken and human infection.</p> <p>Results</p> <p>With the exception of one isolate, the microarray data clusters the isolates according to the five groups determined by PFGE. In contrast, MLST defines only three genotypes among the isolates, indicating a lower resolution. All methods show that there is no inherit difference between isolates infecting humans and chicken, suggesting a common underlying population of <it>C. jejuni</it>. We further identify regions that frequently differ between isolates, including both previously described and novel regions. Finally, we show that genes that belong to certain functional groups differ between isolates more often than expected by chance.</p> <p>Conclusion</p> <p>In this study we demonstrated the utility of 70-mer oligonucleotide microarrays for genotyping of <it>Campylobacter jejuni </it>isolates, with resolution outperforming MLST.</p

    The environment drives microbial trait variability in aquatic habitats

    Get PDF
    A prerequisite to improve the predictability of microbial community dynamics is to understand the mechanisms of microbial assembly. To study factors that contribute to microbial community assembly, we examined the temporal dynamics of genes in five aquatic metagenome time-series, originating from marine offshore or coastal sites and one lake. With this trait-based approach we expected to find gene-specific patterns of temporal allele variability that depended on the seasonal metacommunity size of carrier-taxa and the variability of the milieu and the substrates to which the resulting proteins were exposed. In more detail, we hypothesized that a larger seasonal metacommunity size would result in increased temporal variability of functional units (i.e., gene alleles), as shown previously for taxonomic units. We further hypothesized that multicopy genes would feature higher temporal variability than single-copy genes, as gene multiplication can result from high variability in substrate quality and quantity. Finally, we hypothesized that direct exposure of proteins to the extracellular environment would result in increased temporal variability of the respective gene compared to intracellular proteins that are less exposed to environmental fluctuations. The first two hypotheses were confirmed in all data sets, while significant effects of the subcellular location of gene products was only seen in three of the five time-series. The gene with the highest allele variability throughout all data sets was an iron transporter, also representing a target for phage infection. Previous work has emphasized the role of phage-prokaryote interactions as a major driver of microbial diversity. Our finding therefore points to a potentially important role of iron transporter-mediated phage infections for the assembly and maintenance of diversity in aquatic prokaryotes
    corecore