3,005 research outputs found
Inter- and Intra-Individual Differences in EMG and MMG during Maximal, Bilateral, Dynamic Leg Extensions
The purpose of this study was to compare the composite, inter-individual, and intra-individual differences in the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) during fatiguing, maximal, bilateral, and isokinetic leg extension muscle actions. Thirteen recreationally active men (age = 21.7 2.6 years; body mass = 79.8 11.5 kg; height = 174.2 12.7 cm) performed maximal, bilateral leg extensions at 1801 until the torque values dropped to 50% of peak torque for two consecutive repetitions. The EMG and MMG signals from the vastus lateralis (VL) muscles of both limbs were recorded. Four 2(Leg) 19(time) repeated measures ANOVAs were conducted to examine mean differences for EMG AMP, EMG MPF, MMG AMP, and MMG MPF between limbs, and polynomial regression analyses were performed to identify the patterns of neuromuscular responses. The results indicated no significant differences between limbs for EMG AMP (p = 0.44), EMG MPF (p = 0.33), MMG AMP (p = 0.89), or MMG MPF (p = 0.52). Polynomial regression analyses demonstrated substantial inter-individual variability. Inferences made regarding the patterns of neuromuscular responses to fatiguing and bilateral muscle actions should be considered on a subject-by-subject basis
Time course of changes in torque and neuromuscular parameters during a sustained isometric forearm flexion task to fatigue anchored to a constant rating of perceived exertion
Objective: This study examined the time course of changes in torque and electromyographic (EMG) and mechanomyographic (MMG) responses during a sustained isometric task anchored to a constant perception of exertion (RPE). Methods: Twelve college-aged men performed an isometric forearm flexion task to failure anchored to RPE=7 (OMNI-RES scale). The amplitude (AMP) and frequency (MPF) of the EMG and MMG signals from the biceps brachii were recorded. Repeated measures ANOVAs were used to examine differences for the normalized (%MVIC) torque and neuromuscular parameters. Results: The time to task failure (TTF) was 678.0±468.1s. Torque decreased significantly (p\u3c0.001, ηp 2=0.774) across time and all subjects reduced torque to zero. Post-hoc comparisons indicated that the torque values from 20–100% TTF were less than the value at 10% TTF. There were no significant (p\u3e0.05) changes from 10–100% TTF for the EMG and MMG parameters. Conclusion: We hypothesize that RPE was maintained by various mechanisms throughout the task: group III/IV afferent neurons, adequate blood flow, and a combination of reduced contractile efficiency, collective afferent feedback (group III/IV afferents) from muscles involved with forearm flexion, and motivation that resulted in an initial decrease, plateau, and final decline in torque to zero, respectively
Ipsilateral and Contralateral Torque Responses to Bilateral and Unilateral Maximal, Fatiguing, Isokinetic Leg Extensions
Background: Few studies have compared performance fatigability (PF) for bilateral versus unilateral isokinetic tasks. Objectives: The purpose of this study was to examine: Mode- specific testing responses to isokinetic fatigue, differences in PF between bilateral and unilateral leg extensions, and the effects of fatiguing, unilateral, dynamic leg extensions on contralateral isokinetic peak torque (PT) and maximal voluntary isometric contraction (MVIC). Methods: Eight men (mean ± SD: age= 22.5 ± 2.5 yr.) completed pre- and post-testing for PT and MVIC following 50 bilateral, unilateral right or left leg maximal, isokinetic leg extensions at 180°·s-1, on three separate days. Fatigue-induced decreases in PT and MVIC were used to quantify PF. The data were analyzed with a 4-way repeated measures ANOVA, follow up, and post-hoc analyses. Results: The results indicated that there were no differences (p \u3e 0.05) in PF for the bilateral versus unilateral fatiguing tasks, decreases in PT (p \u3c 0.001 - 0.016; d = 0.54 - 2.58) and MVIC (p \u3c 0.001 - 0.006; η2p = 0.682 - 0.962) for the exercised legs during unilateral fatigue, and a contralateral increase (p = 0.007) in PT following the right leg fatiguing task. Conclusion: The results indicated that PT was more sensitive to fatiguing isokinetic tasks than was MVIC. In addition, there was a facilitation of PT in the contralateral leg following unilateral right leg fatigue. The differences in PT and MVIC testing may be attributable to the timing and/ or relative contributions of peripheral and central fatigue
The Effects of Anchor Schemes on Performance Fatigability, Neuromuscular Responses and the Perceived Sensations That Contributed to Task Termination
The present study examined the effect of anchor schemes on the time to task failure (TTF), performance fatigability, neuromuscular responses, and the perceived sensations that contributed to task termination following the sustained, isometric forearm flexion tasks. Eight women completed sustained, isometric forearm flexion tasks anchored to RPE = 8 (RPEFT) and the torque (TRQFT) that corresponded to RPE = 8. The subjects performed pre-test and post-test maximal isometric contractions to quantify performance fatigability and changes in electromyographic amplitude (EMG AMP) and neuromuscular efficiency (NME). In addition, the subjects completed a post-test questionnaire (PTQ) to quantify the contributions of perceived sensations to task termination. Repeated measure ANOVAs were used to assess the mean differences for TTF, performance fatigability, and neuromuscular responses. Wilcoxon Signed Rank Tests were used to assess the differences between anchor schemes for the average values from the PTQ item scores. For TTF, the RPEFT was longer than the TRQFT (174.9 ± 85.6 vs. 65.6 ± 68.0 s; p = 0.006). Collapsed across the anchor scheme, there were decreases in torque (23.7 ± 5.5 Nm vs. 19.6 ± 4.9 Nm; p \u3c 0.001) and NME (1.00 ± 0.00 vs. 0.76 ± 0.15; p = 0.003). There were no significant (p \u3e 0.577) changes for EMG AMP. For the PTQ, there were no differences (p \u3e 0.05) between anchor schemes. There were, however, inter-individual differences in the response scores. The current findings indicated that performance fatigability was likely due to peripheral fatigue (based on NME), not central fatigue (based on EMG AMP). Furthermore, the use of a PTQ may serve as a simple tool to assess the contributions of perceived sensations to task termination
Performance Fatigability and Neuromuscular Responses Are Not Joint Angle Specific Following a Sustained Isometric Forearm Flexion Task Anchored to a High Perceptual Intensity in Women
Objectives: To examine the effects of joint angle (JA) on maximal voluntary isometric contractions (MVIC) and neuromuscular responses following a sustained, isometric forearm flexion task anchored to a rating of perceived exertion (RPE) of 8 (RPE=8). Methods: Nine women (age: 20.7±2.9 yrs; height: 168.8±7.2 cm; body mass: 66.3±6.8 kg) performed 2,3s forearm flexion MVICs at JAs of 75°, 100°, and 125° prior to and following a sustained, isometric forearm flexion task anchored to RPE=8 to task failure (torque reduced to zero) at JA100. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from the biceps brachii. Results: The MVIC at JA100 (collapsed across Time) was significantly greater (pppp\u3e0.05) differences between Time or JAs. Pre-test neuromuscular efficiency (normalized MVIC/normalized EMG AMP) was significantly greater (p=0.005) than post-test. Conclusion: Following a sustained, isometric forearm flexion task anchored to RPE=8 at JA100, the fatigue-induced MVIC and neuromuscular responses were not affected by JA
Fatiguing Joint Angle Does Not Influence Torque and Neuromuscular Responses Following Sustained, Isometric Forearm Flexion Tasks Anchored to Perceptual Intensity in Men
This study examined the effects of joint angle (JA) on maximal voluntary isometric contraction (MVIC) and neuromuscular responses following fatiguing tasks anchored to RPE. Nine men (mean ± SD: age = 20.7 ± 1.2 yrs) performed forearm flexion MVICs at elbow JAs of 75o and 125o before and after sustained, isometric forearm flexion tasks to failure at fatiguing joint angles (FJA) of 75o and 125o anchored to RPE = 8. The amplitude and frequency of the electromyographic and mechanomyographic signals were recorded. Neuromuscular efficiency was calculated by dividing normalized torque by normalized electromyographic amplitude. A dependent t-test was used to assess the mean difference for time to task failure (TTF) between FJA. Repeated measure ANOVAs were used to assess mean differences for pre-test to post-test MVIC and neuromuscular responses. There was no significant difference between FJA for TTF (p = 0.223). The MVIC (collapsed across FJA and MVIC JA) decreased from pre-test to post-test (51.1 ± 5.0 vs. 45.3 ± 5.6 Nm, p \u3c 0.001). Normalized neuromuscular parameters remained unchanged (p \u3e 0.05). The FJA resulted in similar torque and neuromuscular responses, and the decreases in MVIC were not tracked by changes in the neuromuscular parameters. Thus, the neuromuscular parameters were not sensitive to fatigue, and pre-test to post-test measures may be compared between different FJA
Fatiguing Joint Angle Does Not Influence Torque and Neuromuscular Responses Following Sustained, Isometric Forearm Flexion Tasks Anchored to Perceptual Intensity in Men
This study examined the effects of joint angle (JA) on maximal voluntary isometric contraction (MVIC) and neuromuscular responses following fatiguing tasks anchored to RPE. Nine men (mean ± SD: age = 20.7 ± 1.2 yrs) performed forearm flexion MVICs at elbow JAs of 75o and 125o before and after sustained, isometric forearm flexion tasks to failure at fatiguing joint angles (FJA) of 75o and 125o anchored to RPE = 8. The amplitude and frequency of the electromyographic and mechanomyographic signals were recorded. Neuromuscular efficiency was calculated by dividing normalized torque by normalized electromyographic amplitude. A dependent t-test was used to assess the mean difference for time to task failure (TTF) between FJA. Repeated measure ANOVAs were used to assess mean differences for pre-test to post-test MVIC and neuromuscular responses. There was no significant difference between FJA for TTF (p = 0.223). The MVIC (collapsed across FJA and MVIC JA) decreased from pre-test to post-test (51.1 ± 5.0 vs. 45.3 ± 5.6 Nm, p \u3c 0.001). Normalized neuromuscular parameters remained unchanged (p \u3e 0.05). The FJA resulted in similar torque and neuromuscular responses, and the decreases in MVIC were not tracked by changes in the neuromuscular parameters. Thus, the neuromuscular parameters were not sensitive to fatigue, and pre-test to post-test measures may be compared between different FJA
Perceptual Fatigability and Neuromuscular Responses During a Sustained, Isometric Forearm Flexion Muscle Action Anchored to a Constant Level of Perceived Exertion
Objective: The purpose of the present study was to examine the fatigue-induced changes in torque, and the electromyographic (EMG) and mechanomyographic (MMG) responses during a sustained submaximal, isometric forearm flexion muscle action anchored to a constant rating of perceived exertion (RPE). Methods: Eleven women (mean ± SD: age = 20.5 ± 1.9 yrs.; height = 169.9 ± 6.6 cm; body mass = 73.2 ± 15.9 kg) performed 2, 3s forearm flexion maximal voluntary isometric contractions (MVIC) before a sustained isometric muscle action anchored to RPE = 7 until task failure (defined as torque that would require RPE \u3e 7, or the torque was reduced to zero). The EMG amplitude (AMP), EMG mean power frequency (MPF), MMG AMP, and MMG MPF signals from the biceps brachii (BB) were recorded. Regression analyses were conducted to examine the torque and neuromuscular responses vs. time relationships. Results: The percent decline in torque during the sustained isometric muscle action was 95.69 ± 6.54 %. There was a significant (p \u3c 0.001; R = -0.998), negative quadratic EMG AMP relationship and a significant (p \u3c 0.046; R = 0.952), positive quadratic MMG AMP relationship vs. Time, but no significant (p \u3e 0.05) relationships for EMG MPF or MMG MPF vs. Time. Conclusion: The findings suggested that torque was initially regulated by an anticipatory feedforward mechanism and continually adjusted due to afferent feedback. In addition, substantial inter-individual, as well as differences between the individual and composite responses, were observed for the neuromuscular response patterns
Changes of Hydration Measures in Elite National Collegiate Athletic Association Division I Wrestlers
Purpose: To evaluate the changes in the state of hydration in elite National Collegiate Athletic Association (NCAA) Division I college wrestlers during and after a season. Methods: Ohio State University wrestling team members (N = 6; mean [SD] age = 19.6 [1.1] y; height = 171.6 [2.9] cm; body mass = 69.5 [8.1] kg) gave informed consent to participate in the investigation with measurements (ie, body mass, urine-specific gravity [USG; 2 methods], Visual Analog Scale thirst scale, plasma osmolality) obtained during and after the season. Results: Measurements for USG, regardless of methods, were not significantly different between visits, but plasma osmolality was significantly (P = .001) higher at the beginning of the season—295.5 (4.9) mOsm·kg−1 compared with 279.6 (6.1) mOsm·kg−1 after the season. No changes in thirst ratings were observed, and the 2 measures of USG were highly correlated (r \u3e .9, P = .000) at each time point, but USG and plasma osmolality were not related. Conclusions: A paradox in the clinical interpretation of euhydration in the beginning of the season was observed with the USG, indicating that the wrestlers were properly hydrated, while the plasma osmolality showed they were not. Thus, the tracking of hydration status during the season is a concern when using only NCAA policies and procedures. The wrestlers did return to normal euhydration levels after the season on both biomarkers, which is remarkable, as previous studies have indicated that this may not happen because of the reregulation of the osmol-regulatory center in the brain
- …