31,743 research outputs found

    Transversals in 44-Uniform Hypergraphs

    Get PDF
    Let HH be a 33-regular 44-uniform hypergraph on nn vertices. The transversal number τ(H)\tau(H) of HH is the minimum number of vertices that intersect every edge. Lai and Chang [J. Combin. Theory Ser. B 50 (1990), 129--133] proved that τ(H)7n/18\tau(H) \le 7n/18. Thomass\'{e} and Yeo [Combinatorica 27 (2007), 473--487] improved this bound and showed that τ(H)8n/21\tau(H) \le 8n/21. We provide a further improvement and prove that τ(H)3n/8\tau(H) \le 3n/8, which is best possible due to a hypergraph of order eight. More generally, we show that if HH is a 44-uniform hypergraph on nn vertices and mm edges with maximum degree Δ(H)3\Delta(H) \le 3, then τ(H)n/4+m/6\tau(H) \le n/4 + m/6, which proves a known conjecture. We show that an easy corollary of our main result is that the total domination number of a graph on nn vertices with minimum degree at least~4 is at most 3n/73n/7, which was the main result of the Thomass\'{e}-Yeo paper [Combinatorica 27 (2007), 473--487].Comment: 41 page

    An Enhanced Perturbational Study on Spectral Properties of the Anderson Model

    Full text link
    The infinite-UU single impurity Anderson model for rare earth alloys is examined with a new set of self-consistent coupled integral equations, which can be embedded in the large NN expansion scheme (NN is the local spin degeneracy). The finite temperature impurity density of states (DOS) and the spin-fluctuation spectra are calculated exactly up to the order O(1/N2)O(1/N^2). The presented conserving approximation goes well beyond the 1/N1/N-approximation ({\em NCA}) and maintains local Fermi-liquid properties down to very low temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in the impurity DOS is in accordance with Friedel's sum rule. For N=2N=2 its shift toward the chemical potential, compared to the {\em NCA}, can be traced back to the influence of the vertex corrections. The width and height of the ASR is governed by the universal low temperature energy scale TKT_K. Temperature and degeneracy NN-dependence of the static magnetic susceptibility is found in excellent agreement with the Bethe-Ansatz results. Threshold exponents of the local propagators are discussed. Resonant level regime (N=1N=1) and intermediate valence regime (ϵf<Δ|\epsilon_f| <\Delta) of the model are thoroughly investigated as a critical test of the quality of the approximation. Some applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof

    Decomposing labeled interval orders as pairs of permutations

    Get PDF
    We introduce ballot matrices, a signed combinatorial structure whose definition naturally follows from the generating function for labeled interval orders. A sign reversing involution on ballot matrices is defined. We show that matrices fixed under this involution are in bijection with labeled interval orders and that they decompose to a pair consisting of a permutation and an inversion table. To fully classify such pairs, results pertaining to the enumeration of permutations having a given set of ascent bottoms are given. This allows for a new formula for the number of labeled interval orders

    Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    Full text link
    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.Comment: 10 pages, 4 figure

    Nonlinear control synthesis by convex optimization

    Get PDF
    A stability criterion for nonlinear systems, recently derived by the third author, can be viewed as a dual to Lyapunov's second theorem. The criterion is stated in terms of a function which can be interpreted as the stationary density of a substance that is generated all over the state-space and flows along the system trajectories toward the equilibrium. The new criterion has a remarkable convexity property, which in this note is used for controller synthesis via convex optimization. Recent numerical methods for verification of positivity of multivariate polynomials based on sum of squares decompositions are used

    A Bayesian Heteroscedastic GLM with Application to fMRI Data with Motion Spikes

    Full text link
    We propose a voxel-wise general linear model with autoregressive noise and heteroscedastic noise innovations (GLMH) for analyzing functional magnetic resonance imaging (fMRI) data. The model is analyzed from a Bayesian perspective and has the benefit of automatically down-weighting time points close to motion spikes in a data-driven manner. We develop a highly efficient Markov Chain Monte Carlo (MCMC) algorithm that allows for Bayesian variable selection among the regressors to model both the mean (i.e., the design matrix) and variance. This makes it possible to include a broad range of explanatory variables in both the mean and variance (e.g., time trends, activation stimuli, head motion parameters and their temporal derivatives), and to compute the posterior probability of inclusion from the MCMC output. Variable selection is also applied to the lags in the autoregressive noise process, making it possible to infer the lag order from the data simultaneously with all other model parameters. We use both simulated data and real fMRI data from OpenfMRI to illustrate the importance of proper modeling of heteroscedasticity in fMRI data analysis. Our results show that the GLMH tends to detect more brain activity, compared to its homoscedastic counterpart, by allowing the variance to change over time depending on the degree of head motion
    corecore