760 research outputs found

    Familiäre Kavernome des Zentralnervensystems: Eine klinische und genetische Studie an 15 deutsche Familien

    Get PDF
    Zusammenfassung: 1928 beschrieb Hugo Friedrich Kufs erstmalig eine Familie mit zerebralen, retinalen und kutanen Kavernomen. Mittlerweile wurden über 300 weitere Familien beschrieben. Ebenfalls wurden drei Genloci 7q21-q22 (mit dem Gen CCM1), 7p15-p13 (Gen CCM2) und 3q25.2-q27 (Gen CCM3) beschrieben, in denen Mutationen zu Kavernomen führen. Das Genprodukt von CCM1 ist das Protein Krit1 (Krev Interaction Trapped 1), das über verschiedene Mechanismen mit der Angiogenese interagiert. Das neu entdeckte CCM2-Gen enkodiert ein Protein, das möglicherweise eine dem Krit1 ähnliche Funktion in der Regulation der Angiogenese hat. Das CCM3-Gen wurde noch nicht beschrieben. In dieser Arbeit werden sowohl die klinischen und genetischen Befunde bei 15 deutschen Familien beschriebe

    Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms

    Get PDF
    SummaryTwo-photon imaging of cortical neurons in vivo has provided unique insights into the structure, function, and plasticity of cortical networks, but this method does not currently allow simultaneous imaging of neurons in the superficial and deepest cortical layers. Here, we describe a simple modification that enables simultaneous, long-term imaging of all cortical layers. Using a chronically implanted glass microprism in barrel cortex, we could image the same fluorescently labeled deep-layer pyramidal neurons across their entire somatodendritic axis for several months. We could also image visually evoked and endogenous calcium activity in hundreds of cell bodies or long-range axon terminals, across all six layers in visual cortex of awake mice. Electrophysiology and calcium imaging of evoked and endogenous activity near the prism face were consistent across days and comparable with previous observations. These experiments extend the reach of in vivo two-photon imaging to chronic, simultaneous monitoring of entire cortical columns.Video Abstrac

    Long-term efficiency of infliximab in patients with ankylosing spondylitis : real life data confirm the potential for dose reduction

    Get PDF
    Objective: To analyse the treatment outcome of patients with ankylosing spondylitis (AS) in the European AS infliximab cohort (EASIC) study after a total period of 8 years with specific focus on dosage and the duration of intervals between infliximab infusions. Methods: EASIC included patients with AS who had received infliximab for 2 years as part of the ASSERT trial. After that period, rheumatologists were free to change the dose or the intervals of infliximab. Clinical data were status at baseline, end of ASSERT and for a total of 8 years of follow-up. Results: Of the initially 71 patients with AS from EASIC, 55 patients (77.5%) had completed the 8th year of anti-tumour necrosis factor (TNF) treatment. Of those, 48 patients (87.3%) still continued on infliximab. The mean infusion interval increased slightly from 6 to 7.1 +/- 1.5 weeks, while 45.8% patients had increased the intervals up to a maximum of 12 weeks. The mean infliximab dose remained stable over time, with a minimum of 3.1 mg/kg and a maximum of 6.4 mg/kg. In patients receiving <5 mg/kg infliximab, the mean infusion interval increased to 7.0 +/- 1.2 weeks. In total, the mean cumulative dose per patient and per year decreased from 3566.30 to 2973.60 mg. Conclusions: We could observe that over a follow-up of 8 years of treatment with infliximab, >85% patients still remained on the same treatment, without any major safety events. Furthermore, both the infusion intervals and also the mean infliximab dose were modestly reduced in >= 70% of the patients without the loss of clinical efficiency

    CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases

    Full text link
    © 2019 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. Species occurrence records from online databases are an indispensable resource in ecological, biogeographical and palaeontological research. However, issues with data quality, especially incorrect geo-referencing or dating, can diminish their usefulness. Manual cleaning is time-consuming, error prone, difficult to reproduce and limited to known geographical areas and taxonomic groups, making it impractical for datasets with thousands or millions of records. Here, we present CoordinateCleaner, an r-package to scan datasets of species occurrence records for geo-referencing and dating imprecisions and data entry errors in a standardized and reproducible way. CoordinateCleaner is tailored to problems common in biological and palaeontological databases and can handle datasets with millions of records. The software includes (a) functions to flag potentially problematic coordinate records based on geographical gazetteers, (b) a global database of 9,691 geo-referenced biodiversity institutions to identify records that are likely from horticulture or captivity, (c) novel algorithms to identify datasets with rasterized data, conversion errors and strong decimal rounding and (d) spatio-temporal tests for fossils. We describe the individual functions available in CoordinateCleaner and demonstrate them on more than 90 million occurrences of flowering plants from the Global Biodiversity Information Facility (GBIF) and 19,000 fossil occurrences from the Palaeobiology Database (PBDB). We find that in GBIF more than 3.4 million records (3.7%) are potentially problematic and that 179 of the tested contributing datasets (18.5%) might be biased by rasterized coordinates. In PBDB, 1205 records (6.3%) are potentially problematic. All cleaning functions and the biodiversity institution database are open-source and available within the CoordinateCleaner r-package

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.</p> <p>Results</p> <p>We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information).</p> <p>Conclusions</p> <p>The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.</p
    • …
    corecore