3,168 research outputs found

    Instabilities of a Bose-Einstein condensate in a periodic potential: an experimental investigation

    Full text link
    By accelerating a Bose-Einstein condensate in a controlled way across the edge of the Brillouin zone of a 1D optical lattice, we investigate the stability of the condensate in the vicinity of the zone edge. Through an analysis of the visibility of the interference pattern after a time-of-flight and the widths of the interference peaks, we characterize the onset of instability as the acceleration of the lattice is decreased. We briefly discuss the significance of our results with respect to recent theoretical work.Comment: 7 pages, 3 figures; submitted to Optics Express (Focus Issue on Cold Atomic Gases in Optical Lattices

    Stimulated Raman adiabatic passage into continuum

    Full text link
    We propose a technique which produces nearly complete ionization of the population of a discrete state coupled to a continuum by a two-photon transition via a lossy intermediate state whose lifetime is much shorter than the interaction duration. We show that using counterintuitively ordered pulses, as in stimulated Raman adiabatic passage (STIRAP), wherein the pulse coupling the intermediate state to the continuum precedes and partly overlaps the pulse coupling the initial and intermediate states, greatly increases the ionization signal and strongly reduces the population loss due to spontaneous emission through the lossy state. For strong spontaneous emission from that state, however, the ionization is never complete because the dark state required for STIRAP does not exist. We demonstrate that this drawback can be eliminated almost completely by creating a laser-induced continuum structure (LICS) by embedding a third discrete state into the continuum with a third control laser. This LICS introduces some coherence into the continuum, which enables a STIRAP-like population transfer into the continuum. A highly accurate analytic description is developed and numerical results are presented for Gaussian pulse shapes

    Centralized Control System Design for Underwater Transportation using two Hovering Autonomous Underwater Vehicles (HAUVs)

    Get PDF
    In this paper, a centralized control system is designed for the two HAUVs undertaking underwater transportation of a spherical payload via cylindrical manipulators. First, the nonlinear coupled dynamic model is developed considering the rigid body connection method for transportation. The effect of the hydrodynamic, hydrostatic and thrust parameters are taken about the centre of the combined body i.e. the centre of payload. Path trajectory is generated using the minimum snap trajectory algorithm. The trajectory is divided into segments for each directional motion which is further divided into the waypoints based on the time step of the duration. The path between two waypoints is represented by a 7th order polynomial. The centralized control system is designed to follow the desired trajectory. The control system is designed using PID controllers for the motion control in each direction. The main technical requirements are the stability of the payload, accurate trajectory tracking and robustness to overcome uncertainties. Stability cannot be compromised because of the rigid connection between the vehicles and the payload, whereas, tracking is given a tolerance of ±5%. Transportation task is observed for the desired motion in the horizontal plane. The time domain motion simulation results show that the desired trajectory has been accurately followed by the combined system while meeting the technical requirements

    Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy)

    Get PDF
    While low-angle normal faults have been recognized worldwide from geological studies, whether these structures are active or capable of generating big earthquakes is still debated. We provide new constraints on the role and modes of the Altotiberina fault (ATF) in accommodating extension in the Northern Apennines. We model GPS velocities to study block kinematics, faults slip rates and interseismic coupling of the ATF, which is active and accounts, with its antithetic fault, for a large part of the observed chain normal 3 mm/yr tectonic extension. A wide portion of the ATF creeps at the long-term slip rate (1.7 \ub1 0.3 mm/yr), but the shallow locked portions are compatible with M > 6.5 earthquakes. We suggest that positive stress accumulation due to ATF creep is most likely released by more favorable oriented splay faults, whose rupture may propagate downdip along low-angle normal fault surface and reduce the probability of occurrence of a seismic rupture of the shallower locked portion

    Leader-Follower Formation Control for Underwater Transportation using Multiple Autonomous Underwater Vehicles

    Get PDF
    The successful ability to conduct underwater transportation using multiple autonomous underwater vehicles (AUVs) is important for the commercial sector to undertake precise underwater installations on large modules, whilst for the military sector it has the added advantage of improved secrecy for clandestine operations. The technical requirements are the stability of the payload and internal collision avoidance while keeping track of the desired trajectory considering the underwater effects. Here, a leader-follower formation control strategy was developed and implemented on the transportation system of AUVs. PID controllers were used for the vehicles and a linear feedback controller for maintaining the formation. A Kalman Filter (KF) was designed to estimate the full state of the leader under disturbance, noise and limited sensor readings. The results demonstrate that though the technical requirements are met, the thrust oscillations under disturbance and noise produce the undesired heading angles

    Assessment of Collision Avoidance Strategies for an Underwater Transportation System

    Get PDF
    Transportation using multiple autonomous vehicles with detection avoidance capability is useful for military applications. It is important for such systems to avoid collisions with underwater obstacles in an effective way, while keeping track of the target location. In this paper, sensor-based and path-planning methods of external collision avoidance were investigated for an underwater transportation system. In particular, sensor-based wall-following and hard-switching collision avoidance strategies and an offline RRT* path-planning method was implemented on the simulation model of the transportation system of four Hovering Autonomous Underwater Vehicles (HAUVs). Time-domain motion simulations were performed with each method and their ability to avoid obstacles was compared. The hard-switching method resulted in high yaw moments which caused the vehicle to travel towards the goal by a longer distance. Conversely, in the wall-following method, the yaw moment was kept to zero. Moreover, the wall-following method was found to be better than the hard-switching method in terms of time and power efficiency. The comparison between the offline RRT* path-planning and wall-following methods showed that the fuel efficiency of the former is higher whilst its time efficiency is poorer. The major drawback of RRT* is that it can only avoid the previously known obstacles. In future, offline RRT* and wall following can be blended for a better solution. The outcome of this paper provides guidance for the selection of the most appropriate method for collision avoidance for an underwater transportation system

    Robust trajectory tracking control for unmanned surface vessels under motion constraints and environmental disturbances

    Get PDF
    To achieve a fully autonomous navigation for unmanned surface vessels (USVs), a robust control capability is essential. The control of USVs in complex maritime environments is rather challenging as numerous system uncertainties and environmental influences affect the control performance. This paper therefore investigates the trajectory tracking control problem for USVs with motion constraints and environmental disturbances. Two different controllers are proposed to achieve the task. The first approach is mainly based on the backstepping technique augmented by a virtual system to compensate for the disturbance and an auxiliary system to bound the input in the saturation limit. The second control scheme is mainly based on the normalisation technique, with which the bound of the input can be limited in the constraints by tuning the control parameters. The stability of the two control schemes is demonstrated by the Lyapunov theory. Finally, simulations are conducted to verify the effectiveness of the proposed controllers. The introduced solutions enable USVs to follow complex trajectories in an adverse environment with varying ocean currents

    Reactive control of a two-body point absorber using reinforcement learning

    Get PDF
    In this article, reinforcement learning is used to obtain optimal reactive control of a two-body point absorber. In particular, the Q-learning algorithm is adopted for the maximization of the energy extraction in each sea state. The controller damping and stiffness coefficients are varied in steps, observing the associated reward, which corresponds to an increase in the absorbed power, or penalty, owing to large displacements. The generated power is averaged over a time horizon spanning several wave cycles due to the periodicity of ocean waves, discarding the transient effects at the start of each new episode. The model of a two-body point absorber is developed in order to validate the control strategy in both regular and irregular waves. In all analysed sea states, the controller learns the optimal damping and stiffness coefficients. Furthermore, the scheme is independent of internal models of the device response, which means that it can adapt to variations in the unit dynamics with time and does not suffer from modelling errors

    Sympathetic cooling and collisional properties of a Rb-Cs mixture

    Full text link
    We report on measurements of the collisional properties of a mixture of 133^{133}Cs and 87^{87}Rb atoms in a magnetic trap at μK\mu\mathrm{K} temperatures. By selectively evaporating the Rb atoms using a radio-frequency field, we achieved sympathetic cooling of Cs down to a few μK\mu\mathrm{K}. The inter-species collisional cross-section was determined through rethermalization measurements, leading to an estimate of as=595a0a_s=595 a_0 for the s-wave scattering length for Rb in the ∣F=2,mF=2>|F=2, m_F=2> and Cs in the ∣F=4,mF=4>|F=4, m_F=4> magnetic states. We briefly speculate on the prospects for reaching Bose-Einstein condensation of Cs inside a magnetic trap through sympathetic cooling
    • …
    corecore