40 research outputs found

    Statistical Hadronization of Supercooled Quark-Gluon Plasma

    Get PDF
    The fast simultaneous hadronization and chemical freeze out of supercooled quark-gluon plasma, created in relativistic heavy ion collisions, leads to the re-heating of the expanding matter and to the change in a collective flow profile. We use the assumption of statistical nature of the hadronization process, and study quantitatively the freeze out in the framework of hydrodynamical Bjorken model with different quark-gluon plasma equations of state.Comment: 7 pages, 3 figure

    Strange Hadron Resonances and QGP Freeze-out

    Get PDF
    We describe how the abundance and distribution of hyperon resonances can be used to probe freeze-out conditions. We demonstrate that resonance yields allow us to measure the time scales of chemical and thermal freeze-outs. This should permit a direct differentiation between the explosive sudden, and staged adiabatic freeze-out scenarios.Comment: 8 pages including 4 figures, in Proceedings of Strange Quark Matter 2001, Frankfurt, submitted to J. Phys. G version 2: refernces corrected/added, numercial corrections in figures 2,3,

    Particlization in hybrid models

    Full text link
    In hybrid models, which combine hydrodynamical and transport approaches to describe different stages of heavy-ion collisions, conversion of fluid to individual particles, particlization, is a non-trivial technical problem. We describe in detail how to find the particlization hypersurface in a 3+1 dimensional model, and how to sample the particle distributions evaluated using the Cooper-Frye procedure to create an ensemble of particles as an initial state for the transport stage. We also discuss the role and magnitude of the negative contributions in the Cooper-Frye procedure.Comment: 18 pages, 28 figures, EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics"; version accepted for publication, typos and error in Eq.(1) corrected, the purpose of sampling and change from UrQMD to fluid clarified, added discussion why attempts to cancel negative contributions of Cooper-Frye are not applicable her

    Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze out

    Full text link
    We investigate the effect of early chemical freeze-out on radial flow, elliptic flow and HBT radii by using a fully three dimensional hydrodynamic model. When we take account of the early chemical freeze-out, the space-time evolution of temperature in the hadron phase is considerably different from the conventional model in which chemical equilibrium is always assumed. As a result, we find that radial and elliptic flows are suppressed and that the lifetime and the spatial size of the fluid are reduced. We analyze the p_t spectrum, the differential elliptic flow, and the HBT radii at the RHIC energy by using hydrodynamics with chemically non-equilibrium equation of state.Comment: One subsection and two figures adde

    QGP flow fluctuations and the characteristics of higher moments

    Full text link
    The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb+Pb collisions at sNN=2.76\sqrt{s_{NN}} = 2.76 TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state

    Flow at the SPS and RHIC as a Quark Gluon Plasma Signature

    Get PDF
    Radial and elliptic flow in non-central heavy ion collisions can constrain the effective Equation of State(EoS) of the excited nuclear matter. To this end, a model combining relativistic hydrodynamics and a hadronic transport code(RQMD [17]) is developed. For an EoS with a first order phase transition, the model reproduces both the radial and elliptic flow data at the SPS. With the EoS fixed from SPS data, we quantify predictions at RHIC where the Quark Gluon Plasma(QGP) pressure is expected to drive additional radial and elliptic flow. Currently, the strong elliptic flow observed in the first RHIC measurements does not conclusively signal this nascent QGP pressure. Additional measurements are suggested to pin down the EoS.Comment: 4 pages, 4 figures. Revised. Included discussed of v_2 (p_t) vs. b and comparison to STAR dat

    Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model

    Full text link
    The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC

    A comparison of statistical hadronization models

    Full text link
    We investigate the sensitivity of fits of hadron spectra produced in heavy ion collisions to the choice of statistical hadronization model. We start by giving an overview of statistical model ambiguities, and what they tell us about freeze-out dynamics. We then use Montecarlo generated data to determine sensitivity to model choice. We fit the statistical hadronization models under consideration to RHIC data, and find that a comparison χ2\chi^2 fits can shed light on some presently contentious questions.Comment: Proceedings for SQM2003 [7th Int. Conf. on Strangeness in Quark Matter (Atlantic Beach, NC, USA, Mar 12-17, 2003)], to be published in Journal of Physics G (Typos corrected, reference added

    Dynamics of Hot Bulk QCD Matter: from the Quark-Gluon Plasma to Hadronic Freeze-Out

    Get PDF
    We introduce a combined macroscopic/microscopic transport approach employing relativistic hydrodynamics for the early, dense, deconfined stage of the reaction and a microscopic non-equilibrium model for the later hadronic stage where the equilibrium assumptions are not valid anymore. Within this approach we study the dynamics of hot, bulk QCD matter, which is expected to be created in ultra-relativistic heavy ion collisions at the SPS, the RHIC and the LHC. Our approach is capable of self-consistently calculating the freeze-out of the hadronic system, while accounting for the collective flow on the hadronization hypersurface generated by the QGP expansion. In particular, we perform a detailed analysis of the reaction dynamics, hadronic freeze-out, and transverse flow.Comment: 55 pages, 15 figure
    corecore