59 research outputs found

    Producing viruses in orbit: Current developments for orbital shaken viral vaccine manufacturing

    Get PDF
    Preculture of suspension cells is successfully performed in shake flasks. Especially newly developed designer cells are passaged up to 100 times in shake flaks at high shaking frequency and are then perfectly adapted to growth in a CO2 incubator with pH control and maximum oxygen supply (typically above 80% pO2). When they are subsequently transferred to stirred tank bioreactors for scaling up, specific cell growth rates are often lower and cells become sensitive to pH control via acid/base addition and shear stress due to submers gassing (bubbles). This was also seen for avian AGE1.CR.pIX and human HEK 293 cells. To avoid these problems, scale up in shaken mode was evaluated. Here we present the latest developments of the SB10-X OSB bioreactor with regard to bag design and improvement of the control unit. A new control strategy was introduced leading to a faster and more precise pH and DO control. Furthermore, the perfusion bag was optimized, so that on TFF or two ATF systems can be easily connected. Both developments have led to a more robust SB10-X system that allows to easily perform batch, fed batch or perfusion runs. Please click Download on the upper right corner to see the full abstract

    On the measurement and scaling of mixing time in orbitally shaken bioreactors

    Get PDF
    Accurate determination of the mixing time in orbitally shaken bioreactors (OSRs) is essential for the optimization of mixing processes and minimization of concentration gradients that can be deleterious to cell cultures. The Dual Indicator System for Mixing Time (DISMT) was employed to measure mixing times in cylindrical and Erlenmeyer flask bioreactors. Various aspects of importance for the acquisition of accurate data from the measurement methodology are discussed, utilizing also comparisons of DISMT and pH probe results obtained in two stirred reactors. The OSR results are juxtaposed with data previously reported in the literature for both cylindrical reactors and Erlenmeyer flasks. The employment of a critical Froude number shows promise for the establishment of a scaling law for mixing time across the various types and sizes of shaken bioreactors

    Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments.</p> <p>Results</p> <p>We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system <it>E.coli </it>BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the <it>E.coli </it>cells via a phosphate limitation.</p> <p>Conclusions</p> <p>The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant <it>E.coli</it>-strains.</p

    Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors

    Get PDF
    Background Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device. Results The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects). Conclusions The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities

    A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels

    Get PDF
    Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels
    corecore