36 research outputs found

    Acute ST-segment elevation myocardial infarction after amoxycillin-induced anaphylactic shock in a young adult with normal coronary arteries: a case report

    Get PDF
    BACKGROUND: Acute myocardial infarction (MI) following anaphylaxis is rare, especially in subjects with normal coronary arteries. The exact pathogenetic mechanism of MI in anaphylaxis remains unclear. CASE PRESENTATION: The case of a 32-year-old asthmatic male with systemic anaphylaxis, due to oral intake of 500 mg amoxycillin, complicated by acute ST-elevation MI is the subject of this report. Following admission to the local Health Center and almost simultaneously with the second dose of subcutaneous epinephrine (0.2 mg), the patient developed acute myocardial injury. Coronary arteriography, performed before discharge, showed no evidence of obstructive coronary artery disease. In vivo allergological evaluation disclosed strong sensitivity to amoxycillin and the minor (allergenic) determinants of penicillin. CONCLUSION: Acute ST-elevation MI is a rare but potential complication of anaphylactic reactions, even in young adults with normal coronary arteries. Coronary artery spasm appears to be the main causative mechanism of MI in the setting of "cardiac anaphylaxis". However, on top of the vasoactive reaction, a thrombotic occlusion, induced by mast cell-derived mediators and facilitated by prolonged hypotension, cannot be excluded as a possible contributory factor

    New Insights in Plant Response to Viroid Infection by Differential Expression Analysis

    Get PDF
    Viroids are small circular RNA molecules, 246 to 400 nt long, which infect several crop plants and can cause diseases of economic importance. Citrus spp. are the hosts in which the highest number of viroids has been recovered. Citrus exocortis viroid (CEVd), causal agent of citrus exocortis disease, is responsible for several losses in citrus crops. Little is known about the molecular and cellular mechanisms by which viroids infect plants and produce symptoms. To deepen this knowledge, changes in the gene-expression profile during the early (pre–symptomatic) and the last (post-symptomatic) stage of Etrog citron infection by Citrus exocortis viroid (CEVd) were investigated using a citrus cDNA microarray. MaSigPro analysis was performed, and based on their expression profile along time, genes were divided into five clusters. These results will allow us to have a clearer idea about the changes in the plant transcriptome that are associated with symptom expression and/or with specific plant defense mechanisms

    Identification of transcription factors potencially involved in the juvenile to adult phase transition in Citrus

    Full text link
    [EN] The juvenile to adult transition (JAT) in higher plants is required for them to reach reproductive competence. However, it is a poorly understood process in woody plants, where only a few genes have been definitely identified as being involved in this transition. This work aims at increasing our understanding of the mechanisms regulating the JAT in citrus. Juvenile and adult plants from Pineapple sweet orange (Citrus sinensis) and Rough lemon (C. jambhiri) were used to screen for differentially expressed transcription factors (TFs) using a 115K microarray developed on the basis of the CitrusTF database. Murcott tangor (C. reticulata C. sinensis) and Duncan grapefruit (C. paradisi) were incorporated into the quantitative real-time reverse transcriptionPCR validation in order to select those genes whose phase-specific regulation was common to the four species. A browsable web database has been created with information about the structural and functional annotation related to 1152 unigenes of putative citrus TFs (CTFs). This database constitutes a valuable resource for research on transcriptional regulation and comparative genomics. Moreover, a microarray has been developed and used that contains these putative CTFs, in order to identify eight genes that showed differential expression in juvenile and adult meristems of four different species of citrus. Those genes have been characterized, and their expression pattern in vegetative and reproductive tissues has been analysed. Four of them are MADS-box genes, a family of TFs involved in developmental processes, whereas another one resembles MADS-box genes but lacks the MADS box itself. The other three showed high partial sequence similarity restricted to specific Arabidopsis protein domains but negligible outside those domains. The work presented here indicates that the JAT in citrus could be controlled by mechanisms that are in part common to those of Arabidopsis, but also somehow different, since specific factors without Arabidopsis orthologues have also been characterized. The potential involvement of the genes in the JAT is discussed.The Bioinformatics Core Service of the IBMCP (UPV-CSIC) is acknowledged for its help in bioinformatic analyses. This work was supported by Conselleria de Agricultura, Pesca y Alimentacion of Generalitat Valenciana [Proy_IVIA09/03] to G.A., and by the Ministry of 'Economia y Competividad'-Fondo Europeo de Desarrollo Regional (FEDER) [AGL2011-26490] and the Ministry of 'Ciencia e Innovacion' [AGL2008-01491] and Prometeo II 2013/008.Castillo, M.; Forment Millet, JJ.; Gadea Vacas, J.; Carrasco, J.; Juarez, J.; Navarro, L.; Ancillo, G. (2013). Identification of transcription factors potencially involved in the juvenile to adult phase transition in Citrus. Annals of Botany. 112(7):1371-1381. https://doi.org/10.1093/aob/mct211S137113811127Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983Adamczyk, B. J., Lehti-Shiu, M. D., & Fernandez, D. E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant Journal, 50(6), 1007-1019. doi:10.1111/j.1365-313x.2007.03105.xAltschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Amasino, R. M., & Michaels, S. D. (2010). The Timing of Flowering: Figure 1. Plant Physiology, 154(2), 516-520. doi:10.1104/pp.110.161653Ancillo, G., Gadea, J., Forment, J., Guerri, J., & Navarro, L. (2007). Class prediction of closely related plant varieties using gene expression profiling. Journal of Experimental Botany, 58(8), 1927-1933. doi:10.1093/jxb/erm054Bassene, J. B., Froelicher, Y., Dhuique-Mayer, C., Mouhaya, W., Ferrer, R. M., Ancillo, G., … Ollitrault, P. (2009). Non-additive phenotypic and transcriptomic inheritance in a citrus allotetraploid somatic hybrid between C. reticulata and C. limon: the case of pulp carotenoid biosynthesis pathway. Plant Cell Reports, 28(11), 1689-1697. doi:10.1007/s00299-009-0768-1Bassene, J. B., Froelicher, Y., Dubois, C., Ferrer, R. M., Navarro, L., Ollitrault, P., & Ancillo, G. (2009). Non-additive gene regulation in a citrus allotetraploid somatic hybrid between C. reticulata Blanco and C. limon (L.) Burm. Heredity, 105(3), 299-308. doi:10.1038/hdy.2009.162Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0Bielenberg, D. G., Wang, Y. (Eileen), Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G. L., … Abbott, A. G. (2008). Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes, 4(3), 495-507. doi:10.1007/s11295-007-0126-9Bohlenius, H. (2006). CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees. Science, 312(5776), 1040-1043. doi:10.1126/science.1126038Brill, E. M., & Watson, J. M. (2004). Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Functional Plant Biology, 31(3), 217. doi:10.1071/fp03180Carlsbecker, A., Tandre, K., Johanson, U., Englund, M., & Engström, P. (2004). The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal, 40(4), 546-557. doi:10.1111/j.1365-313x.2004.02226.xChen, H., Rosin, F. M., Prat, S., & Hannapel, D. J. (2003). Interacting Transcription Factors from the Three-Amino Acid Loop Extension Superclass Regulate Tuber Formation. Plant Physiology, 132(3), 1391-1404. doi:10.1104/pp.103.022434Chuang, C.-F., Running, M. P., Williams, R. W., & Meyerowitz, E. M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes & Development, 13(3), 334-344. doi:10.1101/gad.13.3.334Díaz-Riquelme, J., Lijavetzky, D., Martínez-Zapater, J. M., & Carmona, M. J. (2008). Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant Physiology, 149(1), 354-369. doi:10.1104/pp.108.131052Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.-M., … Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl), W13-W17. doi:10.1093/nar/gkr245Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., & Yanofsky, M. F. (2004). The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Current Biology, 14(21), 1935-1940. doi:10.1016/j.cub.2004.10.028Dong, Y.-H., Yao, J.-L., Atkinson, R. G., Putterill, J. J., Morris, B. A., & Gardner, R. C. (2000). Plant Molecular Biology, 42(4), 623-633. doi:10.1023/a:1006301224125Dorca-Fornell, C., Gregis, V., Grandi, V., Coupland, G., Colombo, L., & Kater, M. M. (2011). The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. The Plant Journal, 67(6), 1006-1017. doi:10.1111/j.1365-313x.2011.04653.xEndo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T., & Omura, M. (2005). Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.). Transgenic Research, 14(5), 703-712. doi:10.1007/s11248-005-6632-3Endo, T., Shimada, T., Fujii, H., & Omura, M. (2006). Cloning and characterization of 5 MADS-box cDNAs isolated from citrus fruit tissue. Scientia Horticulturae, 109(4), 315-321. doi:10.1016/j.scienta.2006.06.008Fernández-Ocaña, A., Carmen García-López, M., Jiménez-Ruiz, J., Saniger, L., Macías, D., Navarro, F., … Luque, F. (2010). Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics & Genomes, 6(6), 891-903. doi:10.1007/s11295-010-0299-5Flachowsky, H., Peil, A., Sopanen, T., Elo, A., & Hanke, V. (2007). Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus�נdomestica Borkh.). Plant Breeding, 126(2), 137-145. doi:10.1111/j.1439-0523.2007.01344.xFornara, F., Gregis, V., Pelucchi, N., Colombo, L., & Kater, M. (2008). The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. Journal of Experimental Botany, 59(8), 2181-2190. doi:10.1093/jxb/ern083Gomez-Mena, C. (2005). Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132(3), 429-438. doi:10.1242/dev.01600Honma, T., & Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409(6819), 525-529. doi:10.1038/35054083Huang, X. (1999). CAP3: A DNA Sequence Assembly Program. Genome Research, 9(9), 868-877. doi:10.1101/gr.9.9.868Iida, K., Seki, M., Sakurai, T., Satou, M., Akiyama, K., Toyoda, T., … Shinozaki, K. (2005). RARTF: Database and Tools for Complete Sets of Arabidopsis Transcription Factors. DNA Research, 12(4), 247-256. doi:10.1093/dnares/dsi011Kagale, S., Links, M. G., & Rozwadowski, K. (2010). Genome-Wide Analysis of Ethylene-Responsive Element Binding Factor-Associated Amphiphilic Repression Motif-Containing Transcriptional Regulators in Arabidopsis. Plant Physiology, 152(3), 1109-1134. doi:10.1104/pp.109.151704Krizek, B. A., & Fletcher, J. C. (2005). Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics, 6(9), 688-698. doi:10.1038/nrg1675Kumar, R., Kushalappa, K., Godt, D., Pidkowich, M. S., Pastorelli, S., Hepworth, S. R., & Haughn, G. W. (2007). The Arabidopsis BEL1-LIKE HOMEODOMAIN Proteins SAW1 and SAW2 Act Redundantly to Regulate KNOX Expression Spatially in Leaf Margins. The Plant Cell, 19(9), 2719-2735. doi:10.1105/tpc.106.048769Li, Z.-M., Zhang, J.-Z., Mei, L., Deng, X.-X., Hu, C.-G., & Yao, J.-L. (2010). PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Molecular Biology, 74(1-2), 129-142. doi:10.1007/s11103-010-9660-1Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949Moon, J., Suh, S.-S., Lee, H., Choi, K.-R., Hong, C. B., Paek, N.-C., … Lee, I. (2003). TheSOC1MADS-box gene integrates vernalization and gibberellin signals for flowering inArabidopsis. The Plant Journal, 35(5), 613-623. doi:10.1046/j.1365-313x.2003.01833.xMüller, J., Wang, Y., Franzen, R., Santi, L., Salamini, F., & Rohde, W. (2001). In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. The Plant Journal, 27(1), 13-23. doi:10.1046/j.1365-313x.2001.01064.xMuñoz-Fambuena, N., Mesejo, C., Carmen González-Mas, M., Primo-Millo, E., Agustí, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164Navarro, L. (1990). Shoot-Tip Grafting in Vitro of Woody Species and Its Influence on Plant Age. Plant Aging, 117-123. doi:10.1007/978-1-4684-5760-5_14Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., & Omura, M. (2009). Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiology, 29(7), 921-926. doi:10.1093/treephys/tpp021Peña, L., Martín-Trillo, M., Juárez, J., Pina, J. A., Navarro, L., & Martínez-Zapater, J. M. (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 19(3), 263-267. doi:10.1038/85719Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., & Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405(6783), 200-203. doi:10.1038/35012103Ratcliffe, O. J., Kumimoto, R. W., Wong, B. J., & Riechmann, J. L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING Gene Family: MAF2 Prevents Vernalization by Short Periods of Cold. The Plant Cell, 15(5), 1159-1169. doi:10.1105/tpc.009506Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8Riechmann, J. L., Krizek, B. A., & Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, 93(10), 4793-4798. doi:10.1073/pnas.93.10.4793Rottmann, W. H., Meilan, R., Sheppard, L. A., Brunner, A. M., Skinner, J. S., Ma, C., … Strauss, S. H. (2000). Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal, 22(3), 235-245. doi:10.1046/j.1365-313x.2000.00734.xSamach, A. (2012). Congratulations, you have been carefully chosen to represent an important developmental regulator! Annals of Botany, 111(3), 329-333. doi:10.1093/aob/mcs161Shore, P., & Sharrocks, A. D. (1995). The MADS-Box Family of Transcription Factors. European Journal of Biochemistry, 229(1), 1-13. doi:10.1111/j.1432-1033.1995.tb20430.xSimpson, G. G. (2002). Arabidopsis, the Rosetta Stone of Flowering Time? Science, 296(5566), 285-289. doi:10.1126/science.296.5566.285Smith, H. M. ., Campbell, B. C., & Hake, S. (2004). Competence to Respond to Floral Inductive Signals Requires the Homeobox Genes PENNYWISE and POUND-FOOLISH. Current Biology, 14(9), 812-817. doi:10.1016/j.cub.2004.04.032Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138Tan, F.-C., & Swain, S. M. (2006). Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum, 128(1), 8-17. doi:10.1111/j.1399-3054.2006.00724.xTan, F.-C., & Swain, S. M. (2007). Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum, 131(3), 481-495. doi:10.1111/j.1399-3054.2007.00971.xTominaga, R., Iwata, M., Sano, R., Inoue, K., Okada, K., & Wada, T. (2008). Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development, 135(7), 1335-1345. doi:10.1242/dev.017947Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498Van der Linden, C. G. (2002). Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. Journal of Experimental Botany, 53(371), 1025-1036. doi:10.1093/jexbot/53.371.1025Varkonyi-Gasic, E., Moss, S. M., Voogd, C., Wu, R., Lough, R. H., Wang, Y.-Y., & Hellens, R. P. (2011). Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biology, 11(1), 72. doi:10.1186/1471-2229-11-72Wang, J.-W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 138(4), 738-749. doi:10.1016/j.cell.2009.06.014Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., … Albani, M. C. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459(7245), 423-427. doi:10.1038/nature07988Wu, G., Park, M. Y., Conway, S. R., Wang, J.-W., Weigel, D., & Poethig, R. S. (2009). The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 138(4), 750-759. doi:10.1016/j.cell.2009.06.031Xu, Q., Chen, L.-L., Ruan, X., Chen, D., Zhu, A., Chen, C., … Ruan, Y. (2012). The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45(1), 59-66. doi:10.1038/ng.2472Zhang, J.-Z., Li, Z.-M., Mei, L., Yao, J.-L., & Hu, C.-G. (2009). PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta, 229(4), 847-859. doi:10.1007/s00425-008-0885-zZhu, Q.-H., Guo, A.-Y., Gao, G., Zhong, Y.-F., Xu, M., Huang, M., & Luo, J. (2007). DPTF: a database of poplar transcription factors. Bioinformatics, 23(10), 1307-1308. doi:10.1093/bioinformatics/btm11
    corecore