91 research outputs found

    Spermidine biases the resolution of Holliday junctions by phage Ī» integrase

    Get PDF
    Holliday junctions are a central intermediate in diverse pathways of DNA repair and recombination. The isomerization of a junction determines the directionality of the recombination event. Previous studies have shown that the identity of the central sequence of the junction may favor one of the two isomers, in turn controlling the direction of the pathway. Here we demonstrate that, in the absence of DNA sequence-mediated isomer preference, polycations are the major contributor to biasing strand cleavage during junction resolution. In the case of wild-type phage Ī» excision junctions, spermidine plays the dominant role in controlling the isomerization state of the junction and increases the rate of junction resolution. Spermidine also counteracts the sequence-imposed bias on resolution. The spermidine-induced bias is seen equally on supercoiled and linear excisive recombination junction intermediates, and thus is not just an artefact of in vitro recombination conditions. The contribution of spermidine requires the presence of accessory factors, and results in the repositioning of Int's core-binding domains on junctions, perhaps due to DNA-spermidineā€“protein interactions, or by influencing DNA conformation in the core region. Our results lead us to propose that spermidine together with accessory factors promotes the formation of the second junction isomer. We propose that this rearrangement triggers the activation of the second pair of Int active sites necessary to resolve Holliday junctions during phage Ī» Int-mediated recombination

    Control of directionality in the DNA strand-exchange reaction catalysed by the tyrosine recombinase TnpI

    Get PDF
    In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1ā€“IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1ā€“DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed

    New views of the bacterial chromosome

    No full text
    Symposium on Bacterial Chromosome
    • ā€¦
    corecore