36 research outputs found

    Dual Functional Ultrafiltration Membranes with Enzymatic Digestion and Thermo-Responsivity for Protein Self-Cleaning

    Get PDF
    Controlling surface⁻protein interaction during wastewater treatment is the key motivation for developing functionally modified membranes. A new biocatalytic thermo-responsive poly vinylidene fluoride (PVDF)/nylon-6,6/poly(N-isopropylacrylamide)(PNIPAAm) ultrafiltration membrane was fabricated to achieve dual functionality of protein-digestion and thermo-responsive self-cleaning. The PVDF/nylon-6,6/PNIPAAm composite membranes were constructed by integrating a hydrophobic PVDF cast layer and hydrophilic nylon-6,6/PNIPAAm nanofiber layer on to which trypsin was covalently immobilized. The enzyme immobilization density on the membrane surface decreased with increasing PNIPAAm concentration, due to the decreased number of amine functional sites. An ultrafiltration study was performed using the synthetic model solution containing BSA/NaCl/CaCl2, where the PNIPAAm containing biocatalytic membranes demonstrated a combined effect of enzymatic and thermo-switchable self-cleaning. The membrane without PNIPAAm revealed superior fouling resistance and self-cleaning with an RPD of 22%, compared to membranes with 2 and 4 wt % PNIPAAm with 26% and 33% RPD, respectively, after an intermediate temperature cleaning at 50 °C, indicating that higher enzyme density offers more efficient self-cleaning than the combined effect of enzyme and PNIPAAm at low concentration. The conformational volume phase transition of PNIPAAm did not affect the stability of immobilized trypsin on membrane surfaces. Such novel surface engineering design offer a promising route to mitigate surface⁻protein contamination in wastewater applications

    Novel Drug Delivery System Based on Docetaxel-Loaded Nanocapsules as a Therapeutic Strategy Against Breast Cancer Cells

    Get PDF
    In the field of cancer therapy, lipid nanocapsules based on a core-shell structure are promising vehicles for the delivery of hydrophobic drugs such as docetaxel. The main aim of this work was to evaluate whether docetaxel-loaded lipid nanocapsules improved the anti-tumor effect of free docetaxel in breast cancer cells. Three docetaxel-loaded lipid nanocapsules were synthesized by solvent displacement method. Cytotoxic assays were evaluated in breast carcinoma (MCF-7) cells treated by the sulforhodamine B colorimetric method. Cell cycle was studied by flow cytometry and Annexin V-FITC, and apoptosis was evaluated by using propidium iodide assays. The anti-proliferative effect of docetaxel appeared much earlier when the drug was encapsulated in lipid nanoparticles than when it was free. Docetaxel-loaded lipid nanocapsules significantly enhanced the decrease in IC50 rate, and the treated cells evidenced apoptosis and a premature progression of the cell cycle from G(1) to G(2)-M phase. The chemotherapeutic effect of free docetaxel on breast cancer cells is improved by its encapsulation in lipid nanocapsules. This approach has the potential to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in breast cancer therapy

    Prodrug micelle-based nanomedicine for cancer treatment

    No full text
    Nanomedicine8101559-156

    Nanofibers for Membrane Applications

    Full text link

    Nanofiber composite membrane with intrinsic Janus surface for reversed-protein-fouling ultrafiltration

    Full text link
    Janus nanofiber based composite ultrafiltration (UF) membranes were fabricated via a two-step method, i.e., consecutive electrospinning of hydrophilic nylon-6,6/chitosan nanofiber blend and conventional casting of hydrophobic poly­(vinylidene difluoride) (PVDF) dope solution. The as-developed PVDF/nylon-6,6/chitosan membranes were investigated for its morphology using Scanning Electron Microscopy (SEM) by which 18 wt % PVDF was chosen as the optimum base polymer concentration due to optimal degree of integration of cast and nanofiber layers. This membrane was benchmarked against the pure PVDF and PVDF/nylon-6,6 membranes in terms of surface properties, permeability, and its ability to reverse protein fouling. The improved hydrophilicity of the PVDF/nylon-6,6/chitosan membrane was revealed from the 72% reduction in the initial water contact angle compared to the pure PVDF benchmark, due to the incorporation of intrinsic hydrophilic hydroxyl and amine functional groups on the membrane surface confirmed by FTIR. The integration of the nanofiber and cast layers has led to altered pore arrangements offering about 93% rejection of bovine serum albumin (BSA) proteins with a permeance of 393 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup> in cross-flow filtration experiments; while the PVDF benchmark only had a BSA rejection of 67% and a permeance of 288 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup>. The PVDF/nylon-6,6/chitosan membrane exhibited high fouling propensity with 2.2 times higher reversible fouling and 78% decrease in the irreversible fouling compared to the PVDF benchmark after 4 h of filtration with BSA foulants
    corecore