9 research outputs found
Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils
As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We conclude that the main toxicants present in these soil pore water samples are organic rather than metallic in nature. Organic extracts from a control standard soil (Lufa 2.2) had negligible effects on expression of these genes, and similarly several pesticides had little effect on the expression of a constitutive myo-3::GFP transgene. Both the P73 and P74 sites have been treated regularly with (undisclosed) pesticides, as permitted under EU regulations, though other (e.g. industrial) organic residues may also be present
Transgenic nematodes as biosensors for metal stress in soil pore water samples
Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions
Stress-responses to single and mixed toxicants in trasgenic strains of the nematode Caenorhabditis elegans
Organisms exposed to toxicants activate various defensive pathways such as the heat shock, xenobiotic, oxidative and metal stress responses. These sub-networks (pathways) involving groups of stress response genes act together in an integrated manner and hence constitute an overall Stress Response Network (SRN). My study aims at understanding this network of stress pathways by monitoring stress response reporter-gene outputs during exposure to single chemicals (11 heavy metals and 12 pesticides) and several mixtures, using 24 transgenic GFP reporter strains of the nematode Caenorhabditis elegans. Major stress responsive genes belonging to the heat-shock, metal-response and oxidative stress groups - plus selected genes from the xenobiotic response pathways, were selected as representative genes for this work. In addition, GFP transgenic strains for the key transcription factors that act in these stress pathways, along with the master stress regulators DAF-16 and CEP-1, were also studied. My study focused mainly on genes involved in the heat-shock stress and xenobiotic stress pathways, but responses involving other pathways are also reported, with appropriate attribution to the respective authors. Toxicant exposures of these arrays of transgenic strains were performed initially at 3 time-points on different dose ranges of single toxicants, selected on the basis of their known toxicity or widespread use (e.g. certain pesticides) in the environment. As part of a broader UKIERI project, the single toxicant exposure data were used in generating mathematical models of the stress-responsive sub-networks (performed by mathematicians Dr. Haque and Prof. King, School of Mathematical Sciences, University of Nottingham), which in turn were used to predict the likely outcome of exposures to simple toxicant mixtures. Organisms are often exposed to mixtures of toxicants in the environment and it is therefore important to understand and is possible predict the effects of toxicant mixtures. These models predicted different responses, e.g. additive effects for chemically similar (e.g. divalent) metals versus interfering effects for chemically dissimilar metals (e.g. divalent plus trivalent) in the case of the metallothionein (MTL) sub-network. By contrast, the heat-shock (HSP) sub- network model predicted only additive responses, irrespective of chemical similarity. Laboratory testing of simple binary mixtures using GFP reporter strains confirmed all of these model predictions. RNA interference was also used to knockdown key transcription factors in selected stress pathways (e.g. HSF-l, ELT-2, NHR-8 and DAF-16) in order to confirm the role of these factors in toxicant -induced gene expression. My study also investigated the effects of more complex chemical mixtures, such as soil water samples from a former mine site (P79) and two agricultural sites (P73 and P74), derived from the Spanish ECOMETRISK project. Our results identified responses to these complex mixtures that broadly agree (though only at certain time-points) with the mathematical model predictions for binary metal mixtures, in the case of soil sample P79. Interestingly, strong GFP induction was observed for several stress genes for the two agricultural soil samples and this was caused by the organic components present in these soil water samples rather than by metals. The source and nature of these organic contaminants in agricultural soils remains to be determined, though pesticide residues seem a likely culprit.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective
Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms
Postbiotics of Naturally Fermented Synbiotic Mixture of Rice Water Aids in Promoting Colonocyte Health
The eubiotic state of the gut microbiota is primarily brought about by various probiotic species that colonize the gut. It is becoming very clear that the probiotic-metabolite mixtures in the gut luminal milieu is central in establishing cross-kingdom signalling networks to maintain gut-multi-organ axes health. Culturally, different fermented foods and beverages have been regional staples since ancient times, and are known to be enriched with probiotics. However, regional variations including the environment, the staple food source (prebiotics), and fermentation methods, among other factors, influence the fermenting probiotic species. Fermented rice water (FRW), an economical, easy to make, simple beverage is a rich source of synbiotics. Therefore, consumption of fermented rice water allows for the intake of a variety of region-specific live probiotics. The secondary metabolites (postbiotics) present in such symbiotic mixtures may also contribute toward maintaining normal intestinal cellular functions. In this study, we highlight that regional staples such as rice consumed in their fermented form may hold promise in alleviating gut-related diseases. Our results show that simple overnight fermentation of cooked edible rice enables the growth of probiotic bacterial species belonging to the Lactic Acid Bacteria group (Leuconostoc lactis, Weisella confusa, Weisella cibacria, Lactococcus lactis, lactococcus taiwanensis, Lactobacillus fermentum, Lactobacillus nagelii, and Lactobacillus delbrueckii ssp. indicus). Metabolomic analysis of the overnight fermented and over two-nights fermented rice water identified more than 200 postbiotic metabolites. Our results show that postbiotics contributing to energy metabolism, gut-multiorgan axes, and microbial paraprobiotics are enriched in the overnight (~10 h) fermented rice water as compared to the over two-nights fermented rice water. Functional analysis via gene expression studies for nutrient absorption (mct-1 and mct-2) and barrier integrity (occludin and zo-1) reveals significant upregulation of these genes upon FRW treatment of HT29 colon cells. This study is a first-of-its-kind to demonstrate the proof-of-principle that postbiotics of naturally fermented rice water positively modulates colonocyte health
Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils
As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We conclude that the main toxicants present in these soil pore water samples are organic rather than metallic in nature. Organic extracts from a control standard soil (Lufa 2.2) had negligible effects on expression of these genes, and similarly several pesticides had little effect on the expression of a constitutive myo-3::GFP transgene. Both the P73 and P74 sites have been treated regularly with (undisclosed) pesticides, as permitted under EU regulations, though other (e.g. industrial) organic residues may also be present