117 research outputs found

    ProteinCCD with construct scoring and ranking

    Get PDF
    The Protein Crystallographic Construct Design [1] ProteinCCD (https://xtal.nki.nl/ccd/) software we previously described in deliverable 7.2 aims to increase the efficiency of researchers producing soluble protein in amounts suitable for structural studies, by facilitating the design of several truncation constructs of a protein under investigation. ProteinCCD functions as a meta server that collects information from (web-based) external software that predicts from sequence secondary structure, disorder, coiled coils, transmembrane segments, domains and domain linkers. Viewing the protein sequence annotated with the prediction results allows users to interactively choose possible starts and ends for suitable protein constructs and designing primers needed for PCR amplification. ProteinCCD outputs a comprehensive view of all constructs and all primers needed for bookkeeping and/or ordering of the designed primers. The functionality of ProteinCCD has been extended under 7.1 to a new computational platform allowing a more interactive and efficient interface to the user, and providing new analysis options. These include parallel processing of server requests, more efficient interface for construct design, more cloning methods, an extended collection of existing vectors, local execution of some algorithms for improving response time, new servers for meta-analysis, easy bookkeeping, and better data security. Working towards the goal of this deliverable, to provide construct scoring and ranking we implemented several features to reach this goal. Automated alignments of the “work” protein to orthologues present in typical model species, are now provided to the user to facilitate better choices for constructs. All constructs can now be given to the users not only as the “native” protein sequence (as before) but also in the specific context of the cloning vector used for production, including purification tags, and the sequence after enzymatic cleavage of the tags. This is important, as each proteins version has different properties. The molecular weight, isoelectric point, and absorption coefficient for every construct is also computed, enabling the users to understand the properties of the produced proteins. The final goal to rank the chances of successfully producing the proteins, is realized by assessing the chances to produce soluble proteins for each protein. A score from 0-1 is given by different servers, and provided to the users. The constructs can then be ranked according to these scores

    Accelerated X-ray Structure Elucidation of a 36 kDa Muramidase/Transglycosylase Using wARP

    Get PDF
    The X-ray structure of the 36kDa soluble lytic transglycosylase from Escherichia coli has been determined starting with the multiple isomorphous replacement method with inclusion of anomalous scattering at 2.7 Å resolution. Subsequently, before any model building was carried out, phases were extended to 1.7 Å, resolution with the weighted automated refinement procedure wARP, which gave a dramatic improvement in the phases. The electron-density maps from wARP were of outstanding quality for both the main chain and the side chains of the protein, which allowed the time spent on the tracing, interpretation and building of the X-ray structure to be substantially shortened. The structure of the soluble lyric transglycosylase was refined at 1.7 Å, resolution with X-PLOR to a final crystallographic R factor of 18.9%. Analysis of the wARP procedure revealed that the use of the maximum-likelihood refinement in wARP gave much better phases than least-squares refinement, provided that the ratio of reflections to protein atom parameters was approximately 1.8 or higher. Furthermore, setting aside 5% of the data for an Rfree test set had a negative effect on the phase improvement. The mean WwARP, a weight determined at the end of the wARP procedure and based on the variance of structure factors from six individually refined wARP models, proved to be a better indicator than the Rfree factor to judge different phase improvement protocols. The elongated Slt35 structure has three domains named the alpha, beta and core domains. The alpha domain contains mainly α-helices, while the beta domain consists of a five-stranded antiparallel β-sheet flanked by a short α-helix. Sandwiched between the alpha and beta domains is the core domain, which bears some resemblance to the fold of the catalytic domain of the previously elucidated 70 kDa soluble lytic transglycosylase from E. coli. The putative active site is at the bottom of a large deep groove in the core domain.

    Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease

    Get PDF
    The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for ∼28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons

    Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease

    Get PDF
    The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for ∼28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons

    ARP

    Full text link

    Negative regulation of urokinase receptor activity by a GPI-specific phospholipase C in breast cancer cells.

    Get PDF
    The urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored protein that promotes tissue remodeling, tumor cell adhesion, migration and invasion. uPAR mediates degradation of the extracellular matrix through protease recruitment and enhances cell adhesion, migration and signaling through vitronectin binding and interactions with integrins. Full-length uPAR is released from the cell surface, but the mechanism and significance of uPAR shedding remain obscure. Here we identify transmembrane glycerophosphodiesterase GDE3 as a GPI-specific phospholipase C that cleaves and releases uPAR with consequent loss of function, whereas its homologue GDE2 fails to attack uPAR. GDE3 overexpression depletes uPAR from distinct basolateral membrane domains in breast cancer cells, resulting in a less transformed phenotype, it slows tumor growth in a xenograft model and correlates with prolonged survival in patients. Our results establish GDE3 as a negative regulator of the uPAR signaling network and, furthermore, highlight GPI-anchor hydrolysis as a cell-intrinsic mechanism to alter cell behavior

    Structure-based design of a novel class of autotaxin inhibitors based on endogenous allosteric modulators

    Get PDF
    Autotaxin (ATX) facilitates the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA), a bioactive phospholipid, which facilitates a diverse range of cellular effects in multiple tissue types. Abnormal LPA expression can lead to the progression of diseases such as cancer and fibrosis. Previously, we identified a potent ATX steroid-derived hybrid (partially orthosteric and allosteric) inhibitor which did not form interactions with the catalytic site. Herein, we describe the design, synthesis, and biological evaluation of a focused library of novel steroid-derived analogues targeting the bimetallic catalytic site, representing an entirely unique class of ATX inhibitors of type V designation, which demonstrate significant pathway-relevant biochemical and phenotypic biological effects. The current compounds modulated LPA-mediated ATX allostery and achieved indirect blockage of LPA1 internalization, in line with the observed reduction in downstream signaling cascades and chemotaxis induction. These novel type V ATX inhibitors represent a promising tool to inactivate the ATX-LPA signaling axis

    ARP/wARP and molecular replacement: the next generation

    Get PDF
    A systematic test shows how ARP/wARP deals with automated model building for structures that have been solved by molecular replacement. A description of protocols in the flex-wARP control system and studies of two specific cases are also presented

    Steroid Binding to Autotaxin Links Bile Salts and Lysophosphatidic Acid Signalling

    Get PDF
    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs

    Native mass spectrometry provides direct evidence for DNA mismatch-induced regulation of asymmetric nucleotide binding in mismatch repair protein MutS

    Get PDF
    The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates
    corecore