40 research outputs found

    Dampak Aktivitas Swalayan Grand Hero terhadap Kinerja Ruas Jalan Basuki Rahmat di Kota Palu

    Full text link
    One of the few supermakets in Palu city which considerably crowded is Grand Hero Supermarket. This Supermarket was located on the Basuki Rahmat street. Because this road is an arterial road with highly traffic volume at certain hours, so the Grand Hero Supermarket activity will affect the performance of the road. At peak hours, many vehicles are in and out from the supermaket, disrupting theperformance of BasukiRahmat road. The aim of this research is to understand the existing condition of the Basuki Rahmat street performance with or without the activity of Grand Hero Supermaket. This research was conducted by surveying the volume of the street, side friction and travel time. The survey was carried on Wednesday 04-06-2015 and Saturday 6-06 2015. The analysis was conducted by using Manual Kapasitas Jalan Indonesia 1997 method. The results show that the performance of JalanBasuki Rahmat with no Grand Hero Supermarket\u27s activity has a degree of saturation 0.35. Grand Hero Supermarket with activity would increase the degree of saturation that is 0.43 that increases 22.86%. The speed of light vehicles by MKJI is 42.84 km / h. With the Grand Hero Supermarket activity, the speed of light vehicle decreased from 27.76 km/ h to 23.74 km / h or there are speed reductions of 14.49%. The level of service with the Grand Hero Supermarket activity was at B condition with DS rate of 0,4

    The simultaneous impact of EV charging and PV inverter reactive power on the hosting distribution system's performance: A case study in kuwait

    Get PDF
    Recently, electric vehicles (EVs) have become an increasingly important topic in the field of sustainable transportation research, alongside distributed generation, reactive power compensation, charging optimization, and control. The process of loading on existing power system infrastructures with increasing demand requires appropriate impact indices to be analyzed. This paper studies the impact of integrating electric vehicle charging stations (EVCSs) into a residential distribution network. An actual case study is modeled to acquire nodal voltages and feeder currents. The model obtains the optimal integration of solar photovoltaic (PV) panels with charging stations while considering reactive power compensation. The impact of EV integration for the case study results in two peaks, which show a 6.4% and 17% increase. Varying the inverter to the PV ratio from 1.1 to 2 decreases system losses by 34% to 41%. The type of charging is dependent on the maximum penetration of EVCSs that the network can install without system upgrades. Increasing the number of EVCSs can cause an increase in power system losses, which is dependent on the network architecture. Installing PV reduces the load peak by 21%, and the installation of PV with consideration of reactive power control increases system efficiency and power delivery. 2020 by the authors.Scopus2-s2.0-8509088409

    Real-time smart-digital stethoscope system for heart diseases monitoring

    Get PDF
    One of the major causes of death all over the world is heart disease or cardiac dysfunction. These diseases could be identified easily with the variations in the sound produced due to the heart activity. These sophisticated auscultations need important clinical experience and concentrated listening skills. Therefore, there is an unmet need for a portable system for the early detection of cardiac illnesses. This paper proposes a prototype model of a smart digital-stethoscope system to monitor patient’s heart sounds and diagnose any abnormality in a real-time manner. This system consists of two subsystems that communicate wirelessly using Bluetooth low energy technology: A portable digital stethoscope subsystem, and a computer-based decision-making subsystem. The portable subsystem captures the heart sounds of the patient, filters and digitizes, and sends the captured heart sounds to a personal computer wirelessly to visualize the heart sounds and for further processing to make a decision if the heart sounds are normal or abnormal. Twenty-seven t-domain, f-domain, and Mel frequency cepstral coefficients (MFCC) features were used to train a public database to identify the best-performing algorithm for classifying abnormal and normal heart sound (HS). The hyper parameter optimization, along with and without a feature reduction method, was tested to improve accuracy. The cost-adjusted optimized ensemble algorithm can produce 97% and 88% accuracy of classifying abnormal and normal HS, respectively.Funding: This research was partially funded by Qatar National Research Foundation (QNRF), grant number UREP19-069-2-031 and UREP23-027-2-012 and Research University Grant AP-2017-008/1. The publication of this article was funded by the Qatar National Library.Scopu

    A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vGRF) in gait analysis

    Get PDF
    Gait analysis is a systematic study of human locomotion, which can be utilized in various applications, such as rehabilitation, clinical diagnostics and sports activities. The various limitations such as cost, non-portability, long setup time, post-processing time etc., of the current gait analysis techniques have made them unfeasible for individual use. This led to an increase in research interest in developing smart insoles where wearable sensors can be employed to detect vertical ground reaction forces (vGRF) and other gait variables. Smart insoles are flexible, portable and comfortable for gait analysis, and can monitor plantar pressure frequently through embedded sensors that convert the applied pressure to an electrical signal that can be displayed and analyzed further. Several research teams are still working to improve the insoles' features such as size, sensitivity of insoles sensors, durability, and the intelligence of insoles to monitor and control subjects' gait by detecting various complications providing recommendation to enhance walking performance. Even though systematic sensor calibration approaches have been followed by different teams to calibrate insoles' sensor, expensive calibration devices were used for calibration such as universal testing machines or infrared motion capture cameras equipped in motion analysis labs. This paper provides a systematic design and characterization procedure for three different pressure sensors: force-sensitive resistors (FSRs), ceramic piezoelectric sensors, and flexible piezoelectric sensors that can be used for detecting vGRF using a smart insole. A simple calibration method based on a load cell is presented as an alternative to the expensive calibration techniques. In addition, to evaluate the performance of the different sensors as a component for the smart insole, the acquired vGRF from different insoles were used to compare them. The results showed that the FSR is the most effective sensor among the three sensors for smart insole applications, whereas the piezoelectric sensors can be utilized in detecting the start and end of the gait cycle. This study will be useful for any research group in replicating the design of a customized smart insole for gait analysis. 2020 by the authors. Licensee MDPI, Basel, Switzerland.This research was partially funded by Qatar National Research Foundation (QNRF), grant number NPRP12S-0227-190164 and Research University Grant DIP-2018-017. The publication of this article was funded by the Qatar National Library. The authors would like to thank Engr. Ayman Ammar, Electrical Engineering, Qatar University for helping in printing the printed circuit boards (PCBs). This research was partially funded by Qatar National Research Foundation (QNRF), grant number NPRP12S-0227-190164 and Research University Grant DIP-2018-017. The publication of this article was funded by the Qatar National Library.Scopu

    Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images

    Get PDF
    Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-19) has become a necessity to prevent the spread of the virus during the pandemic to ease the burden on the healthcare system. Chest X-ray (CXR) imaging has several advantages over other imaging and detection techniques. Numerous works have been reported on COVID-19 detection from a smaller set of original X-ray images. However, the effect of image enhancement and lung segmentation of a large dataset in COVID-19 detection was not reported in the literature. We have compiled a large X-ray dataset (COVQU) consisting of 18,479 CXR images with 8851 normal, 6012 non-COVID lung infections, and 3616 COVID-19 CXR images and their corresponding ground truth lung masks. To the best of our knowledge, this is the largest public COVID positive database and the lung masks. Five different image enhancement techniques: histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE), image complement, gamma correction, and balance contrast enhancement technique (BCET) were used to investigate the effect of image enhancement techniques on COVID-19 detection. A novel U-Net model was proposed and compared with the standard U-Net model for lung segmentation. Six different pre-trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. The novel U-Net model showed an accuracy, Intersection over Union (IoU), and Dice coefficient of 98.63%, 94.3%, and 96.94%, respectively for lung segmentation. The gamma correction-based enhancement technique outperforms other techniques in detecting COVID-19 from the plain and the segmented lung CXR images. Classification performance from plain CXR images is slightly better than the segmented lung CXR images; however, the reliability of network performance is significantly improved for the segmented lung images, which was observed using the visualization technique. The accuracy, precision, sensitivity, F1-score, and specificity were 95.11%, 94.55%, 94.56%, 94.53%, and 95.59% respectively for the segmented lung images. The proposed approach with very reliable and comparable performance will boost the fast and robust COVID-19 detection using chest X-ray images.COVID19 Emergency Response Grant #QUERG-CENG-2020-1 from Qatar University, Doha, Qatar provided the support for the work and the claims made herein are solely the responsibility of the authors

    A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals

    Get PDF
    Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with state-of-the-art performance on a very large dataset. An independent test set from a portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature. 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was supported in part by the Qatar National Research Fund under Grant NPRP12S-0227-190164 and in part by the International Research Collaboration Co-Fund (IRCC) through Qatar University under Grant IRCC-2021-001. The statements made herein are solely the responsibility of the authors.Scopu
    corecore