21 research outputs found

    Dynein dynamics during meiotic nuclear oscillations of fission yeast

    Get PDF
    Cytoplasmic dynein is a ubiquitous minus-end directed motor protein that is essential for a variety of cellular processes ranging from cargo transport to spindle and chromosome positioning. Specifically, in fission yeast during meiotic prophase, the fused nucleus follows the spindle pole body in oscillatory movements from one cell pole to the other. The three molecular players that are essential to this process are: (i) the motor protein dynein, which powers the movement of the nucleus, (ii) microtubules, which provide the tracts for the movement and (iii) Num1, the anchor protein of dynein at the cortex. Dyneins that are localized to the anchor protein at the cortex and simultaneously bound to the microtubule emanating from the spindle pole body, pull on that microtubule leading to the movement of the nucleus. The spindle pole body, by virtue of its movement establishes a leading and a trailing side. Previous work by Vogel et al. has elucidated the mechanism of these oscillations as that of asymmetric distribution of dynein between the leading and trailing sides. This differential distribution is a result of the load-dependent detachment of dynein preferentially from the trailing microtubules. This self-organization model for dynein, however, requires a continuous redistribution of dynein from the trailing to the leading side. In addition, dyneins need to be bound to the anchor protein to be able to produce force on the microtubules. Anchored dyneins are responsible for many other important processes in the cell such as spindle alignment and orientation, spindle separation and rotation. So we set out to elucidate the mechanism of redistribution of dynein as well as the targeting mechanism of dynein from the cytoplasm to cortical anchoring sites where they can produce pulling force on microtubules. By employing single-molecule observation using highly inclined laminated optical sheet (HILO) microscopy and tracking of fluorescently-tagged dyneins using a custom software, we were able to show that dyneins redistributed in the cytoplasm of fission yeast by simple diffusion. We also observed that dynein bound first to the microtubule and not directly to the anchor protein Num1. In addition, we were able to capture unbinding events of single dyneins from the microtubule to the cytoplasm. Surprisingly, dynein bound to the microtubule exhibited diffusive behaviour. The switch from diffusive to directed movement required to power nuclear oscillations occurred when dynein bound to its cortical anchor Num1. In summary, dynein employs a two-step targeting mechanism from the cytoplasm to the cortical anchoring sites, with the attachment to the microtubule acting as the intermediate step

    A divide and conquer strategy for the maximum likelihood localization of low intensity objects

    Get PDF
    In cell biology and other fields the automatic accurate localization of sub-resolution objects in images is an important tool. The signal is often corrupted by multiple forms of noise, including excess noise resulting from the amplification by an electron multiplying charge-coupled device (EMCCD). Here we present our novel Nested Maximum Likelihood Algorithm (NMLA), which solves the problem of localizing multiple overlapping emitters in a setting affected by excess noise, by repeatedly solving the task of independent localization for single emitters in an excess noise-free system. NMLA dramatically improves scalability and robustness, when compared to a general purpose optimization technique. Our method was successfully applied for in vivo localization of fluorescent proteins

    Dynein dynamics during meiotic nuclear oscillations of fission yeast

    Get PDF
    Cytoplasmic dynein is a ubiquitous minus-end directed motor protein that is essential for a variety of cellular processes ranging from cargo transport to spindle and chromosome positioning. Specifically, in fission yeast during meiotic prophase, the fused nucleus follows the spindle pole body in oscillatory movements from one cell pole to the other. The three molecular players that are essential to this process are: (i) the motor protein dynein, which powers the movement of the nucleus, (ii) microtubules, which provide the tracts for the movement and (iii) Num1, the anchor protein of dynein at the cortex. Dyneins that are localized to the anchor protein at the cortex and simultaneously bound to the microtubule emanating from the spindle pole body, pull on that microtubule leading to the movement of the nucleus. The spindle pole body, by virtue of its movement establishes a leading and a trailing side. Previous work by Vogel et al. has elucidated the mechanism of these oscillations as that of asymmetric distribution of dynein between the leading and trailing sides. This differential distribution is a result of the load-dependent detachment of dynein preferentially from the trailing microtubules. This self-organization model for dynein, however, requires a continuous redistribution of dynein from the trailing to the leading side. In addition, dyneins need to be bound to the anchor protein to be able to produce force on the microtubules. Anchored dyneins are responsible for many other important processes in the cell such as spindle alignment and orientation, spindle separation and rotation. So we set out to elucidate the mechanism of redistribution of dynein as well as the targeting mechanism of dynein from the cytoplasm to cortical anchoring sites where they can produce pulling force on microtubules. By employing single-molecule observation using highly inclined laminated optical sheet (HILO) microscopy and tracking of fluorescently-tagged dyneins using a custom software, we were able to show that dyneins redistributed in the cytoplasm of fission yeast by simple diffusion. We also observed that dynein bound first to the microtubule and not directly to the anchor protein Num1. In addition, we were able to capture unbinding events of single dyneins from the microtubule to the cytoplasm. Surprisingly, dynein bound to the microtubule exhibited diffusive behaviour. The switch from diffusive to directed movement required to power nuclear oscillations occurred when dynein bound to its cortical anchor Num1. In summary, dynein employs a two-step targeting mechanism from the cytoplasm to the cortical anchoring sites, with the attachment to the microtubule acting as the intermediate step

    Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation

    No full text
    Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell

    Dynein dynamics during meiotic nuclear oscillations of fission yeast

    No full text
    Cytoplasmic dynein is a ubiquitous minus-end directed motor protein that is essential for a variety of cellular processes ranging from cargo transport to spindle and chromosome positioning. Specifically, in fission yeast during meiotic prophase, the fused nucleus follows the spindle pole body in oscillatory movements from one cell pole to the other. The three molecular players that are essential to this process are: (i) the motor protein dynein, which powers the movement of the nucleus, (ii) microtubules, which provide the tracts for the movement and (iii) Num1, the anchor protein of dynein at the cortex. Dyneins that are localized to the anchor protein at the cortex and simultaneously bound to the microtubule emanating from the spindle pole body, pull on that microtubule leading to the movement of the nucleus. The spindle pole body, by virtue of its movement establishes a leading and a trailing side. Previous work by Vogel et al. has elucidated the mechanism of these oscillations as that of asymmetric distribution of dynein between the leading and trailing sides. This differential distribution is a result of the load-dependent detachment of dynein preferentially from the trailing microtubules. This self-organization model for dynein, however, requires a continuous redistribution of dynein from the trailing to the leading side. In addition, dyneins need to be bound to the anchor protein to be able to produce force on the microtubules. Anchored dyneins are responsible for many other important processes in the cell such as spindle alignment and orientation, spindle separation and rotation. So we set out to elucidate the mechanism of redistribution of dynein as well as the targeting mechanism of dynein from the cytoplasm to cortical anchoring sites where they can produce pulling force on microtubules. By employing single-molecule observation using highly inclined laminated optical sheet (HILO) microscopy and tracking of fluorescently-tagged dyneins using a custom software, we were able to show that dyneins redistributed in the cytoplasm of fission yeast by simple diffusion. We also observed that dynein bound first to the microtubule and not directly to the anchor protein Num1. In addition, we were able to capture unbinding events of single dyneins from the microtubule to the cytoplasm. Surprisingly, dynein bound to the microtubule exhibited diffusive behaviour. The switch from diffusive to directed movement required to power nuclear oscillations occurred when dynein bound to its cortical anchor Num1. In summary, dynein employs a two-step targeting mechanism from the cytoplasm to the cortical anchoring sites, with the attachment to the microtubule acting as the intermediate step

    Single-molecule imaging of cytoplasmic dynein in vivo

    No full text
    While early fluorescence microscopy experiments employing fluorescent probes afforded snapshots of the cell, the power of live-cell microscopy is required to understand complex dynamics in biological processes. The first successful cloning of green fluorescent protein in the 1990s paved the way for development of approaches that we now utilize for visualization in a living cell. In this chapter, we discuss a technique to observe fluorescently tagged single molecules in fission yeast. With a few simple modifications to the established total internal reflection fluorescence microscopy, cytoplasmic dynein molecules in the cytoplasm and on the microtubules can be visualized and their intracellular dynamics can be studied. We illustrate a technique to study motor behavior, which is not apparent in conventional ensemble studies of motors. In general, this technique can be employed to study single-molecule dynamics of fluorescently tagged proteins in the cell interior
    corecore