1,624 research outputs found
The role of CD68 positive tam in development of non-small cell lung cancer
Non-small cell lung cancer (NSCLC) is a leading cause of cancer related mortality. Main factors of development of NSCLC are many immune cells involved in tumor microenvironment. Infiltration with CD68 positive tumor associated macrophages (TAM) in the tumor stroma or in the tumor islets is associated with prognosis and stage of the disease for a long time. Investigating immunohistochemically 40 patients with NSCLC we discovered that 25% of patients with metastasis in lymph nodes had low infiltration with TAM in the tumor border, while 35.7% of the patients without metastasis- the infiltration was high (х2=5.19; р=0.023). We also discovered that all patients in stage I and 66.7% of the patients in stage II had low infiltration with TAM in the tumor border, while 100% of those in stage IV had high infiltration in the border (x2=5.44; p=0.02). In addition, we observed that 52.9% of the patients in T3-4 the infiltration of the tumor border with TAM was high, while only 16.7% of those in T1-2 had high infiltration (x2=2.92; p=0.087).
In investigated by our team lung cancers, clear associations were established between CD68 positive cells density in the tumor border and stage of the disease
Optical mapping discerns genome wide DNA methylation profiles
BACKGROUND: Methylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard, a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification. RESULTS: A single molecule approach is presented for the discernment of methylation profiles, based on optical mapping. We report results from a series of pilot studies demonstrating the capabilities of optical mapping as a platform for methylation profiling of whole genomes. Optical mapping was used to discern the methylation profile from both an engineered and wild type Escherichia coli. Furthermore, the methylation status of selected loci within the genome of human embryonic stem cells was profiled using optical mapping. CONCLUSION: The optical mapping platform effectively detects DNA methylation patterns. Due to single molecule detection, optical mapping offers significant advantages over other technologies. This advantage stems from obviation of DNA modification steps, such as bisulfite treatment, and the ability of the platform to assay repeat dense regions within mammalian genomes inaccessible to techniques using array-hybridization technologies
Сравнительное изучение ферментативных гидролизатов изолированного соевого белка и соевой муки методом SE-HPLC
The paper presents the results of an investigation by SE-HPLC (size-exclusion HPLC) of the fractional composition of hydrolyzates of soy flour and isolated soy protein obtained under the action of proteolytic enzymes of different origin and of their multienzyme blends.В работе методом SE-HPLC (эксклюзионной ВЭЖХ) показано различное действие протеолитических ферментных препаратов различного происхождения и их мультиэнзимных композиций на фракционный состав гидролизатов соевой муки и соевого изолированного белка
45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus
Research ArticleThe genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetraploid
(AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model
for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic
spacer (IGS) variability in distinct species representative of Avena genome diversity±A.
strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi
(AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5'
external transcribed spacer (5'-ETS), a promising IGS region for phylogenetic studies poorly
studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due
to distinct 5'-ETS sequence types resulting from major differences in the number and organization
of repeated motifs. Although species with A genome revealed a 5'-ETS organization
(A-organization) similar to the one previously described in A. sativa, a distinct organization
was unraveled in C genome diploid species (C-organization). Interestingly, such new organization
presents a higher similarity with other Poaceae species than A-genome sequences,
supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally,
polyploid species with both genomes mainly retain the A-genome 5'-ETS organization, confirming
the preferential elimination of C-genome sequences in Avena polyploid species.
Moreover, 5'-ETS sequences phylogenetic analysis consistently clustered the species studied
according to ploidy and genomic constitution supporting the use of ribosomal genes to
highlight Avena species evolutive pathways.info:eu-repo/semantics/publishedVersio
The Cotton Centromere Contains a Ty3-gypsy-like LTR Retroelement
The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species
A Single Molecule Scaffold for the Maize Genome
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars
- …