43 research outputs found

    Oral Delivery of Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Bioencapsulated in Plant Cells Attenuates Pulmonary Hypertension

    Get PDF
    Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin–angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics

    Oral Delivery of Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Bioencapsulated in Plant Cells Attenuates Pulmonary Hypertension

    Get PDF
    Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin–angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics

    KCNK3 mutation causes altered immune function in pulmonary arterial hypertension patients and mouse models

    Get PDF
    Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary arterial hypertension (PAH). KCNK3 is expressed in several cell and tissue types on both membrane and endoplasmic reticulum and potentially plays a role in multiple pathological process associated with PAH. However, the role of various stressors driving the susceptibility of KCNK3 mutation to PAH is unknown. Hence, we expose

    Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model

    Get PDF
    We compared the functional outcome of Isl-1+ cardiac progenitors, CD90+ bone marrow-derived progenitor cells, and the combination of the two in a rat myocardial infarction (MI) model. Isl-1+ cells were isolated from embryonic day 12.5 (E12.5) rat hearts and expanded in vitro. Thy-1+/CD90+ cells were isolated from the bone marrow of adult Sprague-Dawley rats by immunomagnetic cell sorting. Six-week-old female Sprague-Dawley rats underwent permanent left anterior descending (LAD) coronary artery ligation and received intramyocardial injection of either saline, Isl-1+ cells, CD90+ cells, or a combination of Isl-1+ and CD90+ cells, at the time of infarction. Cells were delivered transepicardially to the peri-infarct zone. Left ventricular function was assessed by transthoracic echocardiography at 1- and 4-week post-MI and by Millar catheterization (-dP/dt and +dP/dt) at 4-week post-MI. Fluorescence in situ hybridization (Isl-1+cells) and monochrystalline iron oxide nanoparticles labeling (MION; CD90+ cells) were performed to assess biodistribution of transplanted cells. Only the combination of cells demonstrated a significant improvement of cardiac function as assessed by anterior wall contractility, dP/dt (max), and dP/dt (min), compared to Isl-1+ or CD90+ cell monotherapies. In the combination cell group, viable cells were detected at week 4 when anterior wall motion was completely restored. In conclusion, the combination of Isl-1+ cardiac progenitors and adult bone marrow-derived CD90+ cells shows prolonged and robust myocardial tissue repair and provides support for the use of complementary cell populations to enhance myocardial repair

    Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin deficiency is the prime basis of all diabetic manifestations and agents that can bring about insulin secretion would be of pivotal significance for cure of diabetes. To test this hypothesis, we carried out bioactivity guided fractionation of <it>Oreocnide integrifolia </it>(Urticaceae); a folklore plant consumed for ameliorating diabetic symptoms using experimental models.</p> <p>Methods</p> <p>We carried out bioassay guided fractionation using RINmF and C2C12 cell line for glucose stimulated insulin secretion (GSIS) and glucose uptake potential of fractions. Further, the bioactive fraction was challenged for its GSIS in cultured mouse islets with basal (4.5 mM) and stimulated (16.7 mM) levels of glucose concentrations. The Flavonoid rich fraction (FRF) was exposed to 2 mM streptozotocin stress and the anti-ROS/RNS potential was evaluated. Additionally, the bioactive fraction was assessed for its antidiabetic and anti-apoptotic property <it>in-vivo </it>using multidose streptozotocin induced diabetes in BALB/c mice.</p> <p>Results</p> <p>The results suggested FRF to be the most active fraction as assessed by GSIS in RINm5F cells and its ability for glucose uptake in C2C12 cells. FRF displayed significant potential in terms of increasing intracellular calcium and cAMP levels even in presence of a phosphodiesterase inhibitor, IBMX in cultured pancreatic islets. FRF depicted a dose-dependent reversal of all the cytotoxic manifestations except peroxynitrite and NO formation when subjected <it>in-vitro </it>along with STZ. Further scrutinization of FRF for its <it>in-vivo </it>antidiabetic property demonstrated improved glycemic indices and decreased pancreatic β-cell apoptosis.</p> <p>Conclusions</p> <p>Overall, the flavonoid mixture has shown to have significant insulin secretogogue, insulinomimetic and cytoprotective effects and can be evaluated for clinical trials as a therapeutant in the management of diabetic manifestations.</p

    TRV ANANDHARAJAN's Quick Files

    No full text
    The Quick Files feature was discontinued and it’s files were migrated into this Project on March 11, 2022. The file URL’s will still resolve properly, and the Quick Files logs are available in the Project’s Recent Activity

    Mechanical characteristics and stretch-bend failure analysis on ultra high frequency pulsed gas tungsten arc welded thin FSS 409/430 dissimilar joints

    No full text
    The Mechanical and Stretch-Bend Failure studies on Ultra High Frequency Pulsed Gas Tungsten Arc Welded dissimilar joints of AISI409-AISI430 Ferritic Stainless Steels were conducted. Welding was conducted with 5 ultra high frequencies (50 Hz, 150 Hz, 250 Hz, 350 Hz, 450 Hz). Mechanical characteristics evaluation on the joints included tensile strength, microhardness variations across the welds and creep. Microstructural and metallurgical investigations included weld cross section evaluation, comparing grain variations in high, medium and low thermal heat affected zones, weld zones and base material region. Stretch bend failure studies included studies on angular distortion, fracture limit strain, and coefficient of friction. Tests revealed that joints welded at 350 Hz was better, compared to other joints. Dissimilar AISI409-AISI430 joint fabricated at 350 Hz exhibited 267 ± 3 MPa as yield and 409 ± 6 MPa and as ultimate tensile strength. Its creep fracture duration was 72.7 min (highest among the joints). Microstructural studies revealed grain growth, partially coarse and partially fine grains in heat affected zones. Depending on the difference in grain sizes, on both sides of the welds, heat affected regions were identified as three distinct zones. In AISI430 side; high temperature austenitic, martensitic, delta ferrites and in AISI409 side; needle like martensitic structures, mixture of ferritic-austenitic, δ -ferrite with carbide precipitation were found in high, medium and low thermal heat affected zones, respectively. On increasing the ultra high frequency pulses, angular distortion increased, fractures changed from tensile/shear type to mixed type. In shear bend tests, on increasing the ratio of radius: thickness, fracture limit strain on outer surface, across sheet thickness, due to stretching increased

    Face Recognition

    No full text
    Face Recognition using MATLA

    Overexpression of Msx1 in Mouse Lung Leads to Loss of Pulmonary Vessels Following Vascular Hypoxic Injury

    No full text
    Pulmonary arterial hypertension (PAH) is a progressive lung disease caused by thickening of the pulmonary arterial wall and luminal obliteration of the small peripheral arteries leading to increase in vascular resistance which elevates pulmonary artery pressure that eventually causes right heart failure and death. We have previously shown that transcription factor Msx1 (mainly expressed during embryogenesis) is strongly upregulated in transformed lymphocytes obtained from PAH patients, especially IPAH. Under pathological conditions, Msx1 overexpression can cause cell dedifferentiation or cell apoptosis. We hypothesized that Msx1 overexpression contributes to loss of small pulmonary vessels in PAH. In IPAH lung, MSX1 protein localization was strikingly increased in muscularized remodeled pulmonary vessels, whereas it was undetectable in control pulmonary arteries. We developed a transgenic mouse model overexpressing MSX1 (MSX1OE) by about 4-fold and exposed these mice to normoxic, sugen hypoxic (3 weeks) or hyperoxic (100% 02 for 3 weeks) conditions. Under normoxic conditions, compared to controls, MSX1OE mice demonstrated a 30-fold and 2-fold increase in lung Msx1 mRNA and protein expression, respectively. There was a significant retinal capillary dropout (p &lt; 0.01) in MSX1OE mice, which was increased further (p &lt; 0.03) with sugen hypoxia. At baseline, the number of pulmonary vessels in MSX1OE mice was similar to controls. In sugen-hypoxia-treated MSX1OE mice, the number of small (0–25 uM) and medium (25–50 uM) size muscularized vessels increased approximately 2-fold (p &lt; 0.01) compared to baseline controls; however, they were strikingly lower (p &lt; 0.001) in number than in sugen-hypoxia-treated control mice. In MSX1OE mouse lung, 104 genes were upregulated and 67 genes were downregulated compared to controls. Similarly, in PVECs, 156 genes were upregulated and 320 genes were downregulated from siRNA to MSX1OE, and in PVSMCs, 65 genes were upregulated and 321 genes were downregulated from siRNA to MSX1OE (with control in the middle). Many of the statistically significant GO groups associated with MSX1 expression in lung, PVECs, and PVSMCs were similar, and were involved in cell cycle, cytoskeletal and macromolecule organization, and programmed cell death. Overexpression of MSX1 suppresses many cell-cycle-related genes in PVSMCs but induces them in PVECs. In conclusion, overexpression of Msx1 leads to loss of pulmonary vessels, which is exacerbated by sugen hypoxia, and functional consequences of Msx1 overexpression are cell-dependent

    Pulmonary veno-occlusive disease in Sjogren's syndrome: a case report

    No full text
    Abstract Background Pulmonary arterial hypertension (PAH) associated with connective tissue disease (CTD) belongs to Group 1 pulmonary hypertension. Pulmonary veno-occlusive disease (PVOD), which is characterized by venous system aberrations, has been previously reported in CTD-PAH; however, it has rarely been observed in Sjogren’s syndrome (SS). Case presentation Our 28-year-old female patient was admitted to the hospital with recurrent shortness of breath even after minimal physical activity. Her chest high-resolution CT scan demonstrated pulmonary artery dilatation and bilateral ground-glass nodules. A subsequent right heart catheterization confirmed pulmonary hypertension because her mean pulmonary arterial pressure was 62 mmHg. Our inquisitive genomic assessment identified a novel EIF2AK4 mutation at c.1021 C > T (p. Gln341*), the dominant causal gene of PVOD. Histological examination demonstrated stenosis and occlusions in the pulmonary veins. Because she presented with features such as dry eyes and Raynaud's phenomenon, we performed a biopsy on the labial salivary gland, which confirmed SS. Her treatment regimen included PAH-targeted therapies (tadalafil and macitentan) in combination with hydroxychloroquine. Although she was hospitalized several times due to acute exacerbation of PAH, her disease progression was under control, and she did not demonstrate any signs of pulmonary edema even after a three-year treatment period. Conclusion Here, we report the case of an SS-PAH patient with PVOD who carried a novel biallelic EIF2AK4 mutation, and PAH-targeted therapies were well tolerated by our patient
    corecore