85 research outputs found

    Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics.

    Get PDF
    Recent genome-wide studies conducted in European Whites have identified novel susceptibility genes for childhood acute lymphoblastic leukemia (ALL). We sought to examine whether these loci are susceptibility genes among Hispanics, whose reported incidence of childhood ALL is the highest of all ethnic groups in California, and whether their effects differ between Hispanics and non-Hispanic Whites (NHWs). We genotyped 13 variants in these genes among 706 Hispanic (300 cases, 406 controls) and 594 NHW (225 cases, 369 controls) participants in a matched population-based case-control study in California. We found significant associations for the five studied ARID5B variants in both Hispanics (p values of 1.0 × 10(-9) to 0.004) and NHWs (p values of 2.2 × 10(-6) to 0.018). Risk estimates were in the same direction in both groups (ORs of 1.53-1.99 and 1.37-1.84, respectively) and strengthened when restricted to B-cell precursor high-hyperdiploid ALL (>50 chromosomes; ORs of 2.21-3.22 and 1.67-2.71, respectively). Similar results were observed for the single CEBPE variant. Hispanics and NHWs exhibited different susceptibility loci at CDKN2A. Although IKZF1 loci showed significant susceptibility effects among NHWs (p < 1 × 10(-5)), their effects among Hispanics were in the same direction but nonsignificant, despite similar minor allele frequencies. Future studies should examine whether the observed effects vary by environmental, immunological, or lifestyle factors

    Haplotypes of DNA repair and cell cycle control genes, X-ray exposure, and risk of childhood acute lymphoblastic leukemia

    Get PDF
    [[abstract]]Background: Acute leukemias of childhood are a heterogeneous group of malignancies characterized by cytogenetic abnormalities, such as translocations and changes in ploidy. These abnormalities may be influenced by altered DNA repair and cell cycle control processes. Methods: We examined the association between childhood acute lymphoblastic leukemia (ALL) and 32 genes in DNA repair and cell cycle pathways using a haplotype-based approach, among 377 childhood ALL cases and 448 controls enrolled during 1995-2002. Results: We found that haplotypes in APEX1, BRCA2, ERCC2, and RAD51 were significantly associated with total ALL, while haplotypes in NBN and XRCC4, and CDKN2A were associated with structural and numerical change subtypes, respectively. In addition, we observed statistically significant interaction between exposure to 3 or more diagnostic X-rays and haplotypes of XRCC4 on risk of structural abnormality-positive childhood ALL. Conclusions: These results support a role of altered DNA repair and cell cycle processes in the risk of childhood ALL, and show that this genetic susceptibility can differ by cytogenetic subtype and may be modified by exposure to ionizing radiation. To our knowledge, our study is the first to broadly examine the DNA repair and cell cycle pathways using a haplotype approach in conjunction with X-ray exposures in childhood ALL risk. If confirmed, future studies are needed to identify specific functional SNPs in the regions of interest identified in this analysis

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation.

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.This work was supported by NIH fellowship F32 GM106584 (AG), NIH grants R01 MH101244(A.G.), R01 CA188392 (B.P.), U01 CA194393(B.P.), R01 GM107427 (M.L.F.), R01 CA193910 (M.L.F./M.P.) and Prostate Cancer Foundation Challenge Award (M.L.F./M.P.). This study makes use of data generated by the Wellcome Trust Case Control Consortium and the Wellcome Trust Sanger Institute. A full list of the investigators who contributed to the generation of the Wellcome Trust Case Control Consortium data is available on www.wtccc.org.uk. Funding for the Wellcome Trust Case Control Consortium project was provided by the Wellcome Trust under award 076113. This study makes use of data generated by the UK10K Consortium. A full list of the investigators who contributed to the generation of the data is available online (http://www.UK10K.org). The PRACTICAL consortium was supported by the following grants: European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135 and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative Grant: no. 1 U19 CA 148537-01 (the GAME-ON initiative); Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007 and C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), A Linneus Centre (Contract ID 70867902), Swedish Research Council (grant no K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant no 09-0677), grants RO1CA056678, RO1CA082664 and RO1CA092579 from the US National Cancer Institute, National Institutes of Health; US National Cancer Institute (R01CA72818); support from The National Health and Medical Research Council, Australia (126402, 209057, 251533, 396414, 450104, 504700, 504702, 504715, 623204, 940394 and 614296); NIH grants CA63464, CA54281 and CA098758; US National Cancer Institute (R01CA128813, PI: J.Y. Park); Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2–2009; DFNI-B01/28/2012); Cancer Research UK grants [C8197/A10123] and [C8197/A10865]; grant code G0500966/75466; NIHR Health Technology Assessment Programme (projects 96/20/06 and 96/20/99); Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466 and The NCRI, UK; The US Dept of Defense award W81XWH-04-1-0280; Australia Project Grant [390130, 1009458] and Enabling Grant [614296 to APCB]; the Prostate Cancer Foundation of Australia (Project Grant [PG7] and Research infrastructure grant [to APCB]); NIH grant R01 CA092447; Vanderbilt-Ingram Cancer Center (P30 CA68485); Cancer Research UK [C490/A10124] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge; Competitive Research Funding of the Tampere University Hospital (9N069 and X51003); Award Number P30CA042014 from the National Cancer Institute.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/0.1038/ncomms1097

    Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    Get PDF
    Although genome-wide association studies have identified over 100 risk loci that explain similar to 33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.Peer reviewe
    corecore