109 research outputs found

    Assessment of Lipid Quality in Commercial Omega-3 Supplements Sold in the French Market

    Get PDF
    Supplementation of omega-3 fatty acids is considered a valuable strategy to supply the low intake of these fatty acids. Thus, the safety of the supplements is an important milestone. Because of that, we analyzed 20 unflavored supplements sold in the French market for fatty acid and triglyceride composition, for EPA and DHA, and for tocol content, as well as for oxidative status. This study found that only 2.5% of the supplements did not meet their label claims for omega-3 content. TAG analysis showed high variability among the triglyceride distribution, and the same trend was also noticed for the tocol content; in fact, a high variability of the distribution of the six tocols (four tocopherols and two tocotrienols) was found among the samples. Of the tested products, all of them complied with peroxide value, p-anisidine value, and Totox values established by the Global Organization for EPA and DHA Omega-3s (GOED) and were not oxidized.Spanish Ministry of Science, Education and Universities/Spanish State Research Agency PCI2018-093178European Commissio

    Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil

    Get PDF
    Vito Verardo thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for “Ramon y Cajal” contract (RYC-2015-18795).Tree peonies (Paeonia ostii and Paeonia rockii) are popular ornamental plants. Moreover, these plants have become oil crops in recent years. However, there are limited compositional studies focused on fatty acids. Therefore, this work aims to reveal compositional characteristics, regarding fatty acids, sterols, Îł-tocopherol and phenolic compounds, of tree peony seed oils from all major cultivation areas in China, and to compare with herbaceous peony seed oil. For that, an integrative analysis was performed by GC-FID, GC-MS and UHPLC-Q-TOF-MS technologies. The main fatty acid was α-linolenic acid (39.0–48.3%), while ÎČ-sitosterol (1802.5–2793.7 mg/kg) and fucosterol (682.2–1225.1 mg/kg) were the dominant phytosterols. Importantly, 34 phenolic compounds, including paeonol and “Paeonia glycosides” (36.62–103.17 ”g/g), were characterized in vegetable oils for the first time. Conclusively, this work gives new insights into the phytochemical composition of peony seed oil and reveals the presence of bioactive compounds, including “Paeonia glycosides”.National Natural Science Foundation of China (NSFC) 31601403Fujian Science & Technology Program 2017N5010Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University ZQN-PY41

    Bioactive Components in Fermented Foods and Food By-Products

    Get PDF
    Food fermentation is one of the most ancient processes of food production that has historically been used to extend food shelf life and to enhance its organoleptic properties. However, several studies have demonstrated that fermentation is also able to increase the nutritional value and/or digestibility of food. Firstly, microorganisms are able to produce huge amounts of secondary metabolites with excellent health benefits and preservative properties (i.e., antimicrobial activity). Secondarily, fermented foods contain living organisms that contribute to the modulation of the host physiological balance, which constitutes an opportunity to enrich the diet with new bioactive molecules. Indeed, some microorganisms can increase the levels of numerous bioactive compounds (e.g., vitamins, antioxidant compounds, peptides, etc.). Moreover, recent advances in fermentation have focused on food by-products; in fact, they are a source of potentially bioactive compounds that, after fermentation, could be used as ingredients for nutraceuticals and functional food formulations. Because of that, understanding the benefits of food fermentation is a growing field of research in nutrition and food science. This book aims to present the current knowledge and research trends concerning the use of fermentation technologies as sustainable and GRAS processes for food and nutraceutical production

    Nutritional and Functional Advantages of the Use of Fermented Black Chickpea Flour for Semolina-Pasta Fortification

    Get PDF
    Pasta represents a dominant portion of the diet worldwide and its functionalization with high nutritional value ingredients, such as legumes, is the most ideal solution to shape consumers behavior towards healthier food choices. Aiming at improving the nutritional quality of semolina pasta, semi-liquid dough of a Mediterranean black chickpea flour, fermented with Lactiplantibacillus plantarum T0A10, was used at a substitution level of 15% to manufacture fortified pasta. Fermentation with the selected starter enabled the release of 20% of bound phenolic compounds, and the conversion of free compounds into more active forms (dihydrocaffeic and phloretic acid) in the dough. Fermented dough also had higher resistant starch (up to 60% compared to the control) and total free amino acids (almost 3 g/kg) contents, whereas antinutritional factors (raffinose, condensed tannins, trypsin inhibitors and saponins) significantly decreased. The impact of black chickpea addition on pasta nutritional, technological and sensory features, was also assessed. Compared to traditional (semolina) pasta, fortified pasta had lower starch hydrolysis rate (ca. 18%) and higher in vitro protein digestibility (up to 38%). Moreover, fortified cooked pasta, showing scavenging activity against DPPH and ABTS radicals and intense inhibition of linoleic acid peroxidation, was appreciated for its peculiar organoleptic profile. Therefore, fermentation technology appears to be a promising tool to enhance the quality of pasta and promote the use of local chickpea cultivars while preventing their genetic erosion.Spanish Ministry of Economy and Competitiveness (MINECO) RYC-2015-1879

    Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars

    Get PDF
    Phenolic profiles, antioxidant, and antimicrobial activities of hydroethanolic olive leaf extracts from six Mediterranean olive cultivars (Croatian: Lastovka, Levantinka, Oblica; Italian: Moraiolo, Frantoio, Nostrana di Brisighella) were investigated. As expected, various distributions of phenolic levels were observed for each cultivar and the total phenolic content showed high variability (ranging from 4 to 22 mg GAE/g of dry extract), with the highest amount of phenolics found in the Oblica sample, which also provided the highest antiradical (ORAC) and reducing activity (FRAP). The screening of individual compounds was performed by HPLC-PDA-ESI-QTOF-MS and the main detected compounds were oleuropein, hydroxytyrosol, oleoside/secologanoside, verbascoside, rutin, luteolin glucoside, hydroxyoleuropein, and ligstroside. While the antioxidant activity of the samples was relatively high, they showed no bactericidal and bacteriostatic activity against E. coli and S. Typhimurium; weak activity against Staphylococcus aureus, Bacillus cereus, and Listeria innocua; and inhibitory effects against Campylobacter jejuni at 0.5 mg dry extract/mL. The obtained results support the fact that olive leaf extracts, and especially those from the Oblica cultivar, could potentially be applied in various industries as natural preservatives and effective and inexpensive sources of valuable antioxidants.PRIMA program under project BioProMedFood 1467European CommissionMCIN/AEI RTI2018-099835-A-I0

    Phenolic Profile, Antioxidant Activity and Amino Acid Composition of Moringa Leaves Fermented with Edible Fungal Strains

    Get PDF
    Solid-state fermentation (SSF) is widely recognised as a technique to increase the bioactive potential and nutritional value of plant materials. However, the effect of this biotreatment differs for individual substrates. This study aimed to evaluate the impact of SSF with filamentous fungi (Rhizopus, Aspergillus, and Neurospora) on a moringa leaf phenolic profile, antioxidant activity, and amino acid composition. A total of 43 phenolic compounds were determined in the dried leaves analysed by HPLC-ESI-TOF-MS. The leaves contained 11.79 mg/g of free phenolics: flavonols (80.6%, mainly quercetin and kaempferol glycosides), hydroxycinnamic acid derivatives (12.3%), vitexin and vicenin (6.9%), and a small amount of lignan (isolariciresinol isomers). The result of the 1-day fermentation was a slight enhancement in the concentration of individual free phenolics (flavones) and the antioxidant activity of the leaves. However, extending the incubation period caused a significant decrease in those parameters and cannot be recommended for obtaining a food fortificant from moringa leaves. In contrast, the 3-day fermentation with N. intermedia led to a 26% average accumulation of individual amino acids. Therefore, the SSF with Neurospora can be a promising method for improving the nutritional composition of moringa leaves and needs further investigation.MCIN/AEI RTI2018-099835-A-I0

    Development of an Effective Sonotrode Based Extraction Technique for the Recovery of Phenolic Compounds with Antioxidant Activities in Cherimoya Leaves

    Get PDF
    The leaves of Annona cherimola Mill (cherimoya) are a potential source of phenolic compounds that have been shown to have beneficial properties. Therefore, this study focuses on establishing an ultrasonic-assisted extraction of phenolic compounds in cherimoya leaves using a sonotrode. For that purpose, a Box-Behnken design based on a response surface methodology (RSM) was used to optimize factors, such as amplitude, extraction time and solvent composition to obtain the maximum content of phenolic compounds by HPLC-MS and the maximum in-vitro antioxidant activity by DPPH, ABTS and FRAP assays in ‘Fino de Jete’ cherimoya leaves. The optimal conditions were 70% amplitude, 10 min and 40:60 ethanol/water (EtOH/H2O) (v/v). The results obtained under these optimum conditions by using a sonotrode were compared with those from an ultrasonic bath; briefly, recovery of phenolic compounds by sonotrode was 2.3 times higher than a bath. Therefore, these optimal conditions were applied to different varieties ‘Campas’, ‘Fino de Jete’ and ‘Negrito Joven’ harvested in the Tropical Coast of Granada (Spain). A total of 39 phenolic compounds were determined in these cherimoya leaf extracts, 24 phenolic compounds by HPLC-MS and 15 proanthocianidins by HPLC-FLD. 5-p-coumaroylquinic acid, lathyroside-7-O- -l-rhamnopyranoside and quercetin hexose acetate were first identified in cherimoya leaves. The most concentrated phenolic compounds were the flavonoids, such as rutin and quercetin hexoside and proanthocyanidins including monomers. Almost no significant differences in the phenolic content in these cultivars were found (11–13 mg/g d.w. for phenolic compounds and 11–20 mg/g d.w. for proanthocyanidins). In addition, sonotrode ultrasonic-assisted extraction has been shown to be an efficient extraction technique in the phenolic recovery from cherimoya leaves that could be implemented on an industrial scale.MCIN/AEI/FEDER "Una manera de hacer Europa" RTI2018-099835-A-I0

    Comparison of Two Stationary Phases for the Determination of Phytosterols and Tocopherols in Mango and Its By-Products by GC-QTOF-MS

    Get PDF
    Two different gas chromatography coupled to quadrupole-time of flight mass spectrometry (GC-QTOF-MS) methodologies were carried out for the analysis of phytosterols and tocopherols in the flesh of three mango cultivars and their by-products (pulp, peel, and seed). To that end, a non-polar column ((5%-phenyl)-methylpolysiloxane (HP-5ms)) and a mid-polar column (crossbond trifluoropropylmethyl polysiloxane (RTX-200MS)) were used. The analysis time for RTX-200MS was much lower than the one obtained with HP-5ms. Furthermore, the optimized method for the RTX-200MS column had a higher sensibility and precision of peak area than the HP-5ms methodology. However, RTX-200MS produced an overlapping between ÎČ-sitosterol and Δ5-avenasterol. Four phytosterols and two tocopherols were identified in mango samples. As far as we are concerned, this is the first time that phytosterols have been studied in mango peel and that Δ5-avenasterol has been reported in mango pulp. α- and Îł-tocopherol were determined in peel, and α-tocopherol was the major tocopherol in this fraction (up to 81.2%); however, only α-tocopherol was determined in the pulp and seed. The peel was the fraction with the highest total concentration of phytosterols followed by seed and pulp, and “SensaciĂłn” was the cultivar with the highest concentration of total phytosterols in most cases. There were no significant differences between quantification of tocopherols with both columns. However, in most cases, quantification of phytosterols was higher with RTX-200MS than with HP-5ms column

    Assessment of Lipid Quality in Commercial Omega-3 Supplements Sold in the French Market

    Get PDF
    Supplementation of omega-3 fatty acids is considered a valuable strategy to supply the low intake of these fatty acids. Thus, the safety of the supplements is an important milestone. Because of that, we analyzed 20 unflavored supplements sold in the French market for fatty acid and triglyceride composition, for EPA and DHA, and for tocol content, as well as for oxidative status. This study found that only 2.5% of the supplements did not meet their label claims for omega-3 content. TAG analysis showed high variability among the triglyceride distribution, and the same trend was also noticed for the tocol content; in fact, a high variability of the distribution of the six tocols (four tocopherols and two tocotrienols) was found among the samples. Of the tested products, all of them complied with peroxide value, p-anisidine value, and Totox values established by the Global Organization for EPA and DHA Omega-3s (GOED) and were not oxidized

    Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products

    Get PDF
    Phenolic compounds present in mango peel byproducts have been reported to have several beneficial health properties. In this study, we carried out an optimization of phenolic compounds using ultrasound-assisted extraction via ultrasonic bath and sonotrode. To optimize the variables of extraction, a Box–Behnken design was used to evaluate the best conditions to obtain high total phenolic compound extraction and high antioxidant activity evaluated by different methods (DPPH, ABTS, and FRAP). The optimal ultrasonic bath conditions were 45% ethanol, 60 min, and 1/450 ratio sample/solvent (w/v) whereas optimal sonotrode conditions were 55% ethanol, 18 min, and 65% amplitude. The extracts obtained at the optimal conditions were characterized by HPLC–ESI-TOF-MS. A total of 35 phenolic compounds were determined and, to our knowledge, several of them were tentatively identified for the first time in mango peel. The samples were composed mainly by phenolic acids derivatives, specifically of galloylglucose and methylgallate, which represented more than 50% of phenolic compounds of mango peel byproducts. In conclusion, sonotrode is a valuable green technology able to produce enriched phenolic compound extracts from mango peel byproducts that could be used for food, nutraceutical, and cosmeceutical applications.MCIN/AEI/FEDER "Una manera de hacer Europa" RTI2018-099835-A-I0
    • 

    corecore