18 research outputs found

    Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial

    Get PDF
    Background: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. Objective: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. Research Design and Methods: We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Results and Conclusions: Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1 alpha in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes.Sao Paulo Research Foundation (FAPESP)Sao Paulo Research Foundation (FAPESP)National Institute of Science and Technology (INCT)National Institute of Science and Technology (INCT)National Council for Scientific and Technological Development (CNPq)National Council for Scientific and Technological Development (CNPq

    G120k-peg, A Human Gh Antagonist, Decreases Gh Signal Transduction In The Liver Of Mice.

    No full text
    After receptor binding, growth hormone (GH) induces GH receptors (GHR) dimerization and JAK2 is activated after its association with a dimerized GHR, stimulating the tyrosyl phosphorylation of insulin receptor substrate-1 (IRS-1), IRS-2 and Shc proteins. G120K-PEG, a GH antagonist is produced by a mutation that blocks GH action by preventing the GHR dimerization. This study shows that the inhibitory effect of G120K-PEG was maximal with a GH:G120K-PEG ratio of 1:100, as no increase in JAK2 tyrosyl phosphorylation was observed with this dose of GH. When the dose of GH was increased and with a GH:G120K-PEG ratio of 1:10 some tyrosyl phosphorylation of JAK2 could be observed. Additionally, GH-induced IRS-1, IRS-2 and SHC tyrosyl phosphorylation was inhibited approximately 50% at equimolar concentrations of the antagonist of GH and almost abolished with a GH:G120K-PEG ratio of 1:100. The results clearly show that G120K-PEG inhibits GH signal transduction in mouse liver.19265-7

    Regulation Of Cbl-associated Protein/cbl Pathway In Muscle And Adipose Tissues Of Two Animal Models Of Insulin Resistance.

    No full text
    The phosphatidylinositol 3-kinase-independent pathway to induce glucose transport may involve the tyrosine phosphorylation of the protooncogene c-Cbl. In the present study, we examined whether acute exposure to insulin stimulates the tyrosine phosphorylation of Cbl and its association with Cbl-associated protein (CAP) in muscle and adipose tissue of rats in vivo. We report herein that insulin induces Cbl tyrosine phosphorylation and association with CAP in adipose tissue but not in muscle. We also examined the expression and tyrosyl-phosphorylation state of Cbl and CAP/Cbl association in adipose tissue of rats submitted to prolonged fasting and in monosodium glutamate (MSG)-insulin-resistant rats. An increase in Cbl phosphorylation is observed in the fat of MSG rats, parallel with an increase in association of CAP-Cbl as well as an augment in CAP and Cbl protein expression in the adipose tissue of these animals. These events are accompanied by a decrease in insulin-stimulated insulin receptor/ insulin receptor substrate (IRS)-1 tyrosine phosphorylation and an increase in the IRS-2/phosphatidylinositol 3-kinase/Akt/Foxo1 pathway. In adipocytes of fasted rats, there is a decrease in CAP and Cbl protein expression, insulin-induced Cbl phosphorylation, and the association with CAP. In parallel, there is also a decrease in the insulin receptor/IRSs/Akt/Foxo1 pathway. Thus, insulin is able to induce Cbl tyrosine phosphorylation and its association with CAP in the adipose tissue of normal rats. In addition, our data provide evidence that the CAP-Cbl pathway may have a role in the modulation of adiposity in fasting and in MSG-treated rats.145281-9

    Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response

    No full text
    Hyperosmotic stress induces cytoskeleton reorganization and a net increase in cellular F-actin, but the underlying mechanisms are incompletely understood. Whereas de novo F-actin polymerization likely contributes to the actin response, the role of F-actin severing is unknown. To address this problem, we investigated whether hyperosmolarity regulates cofilin, a key actin-severing protein, the activity of which is inhibited by phosphorylation. Since the small GTPases Rho and Rac are sensitive to cell volume changes and can regulate cofilin phosphorylation, we also asked whether they might link osmostress to cofilin. Here we show that hyperosmolarity induced rapid, sustained, and reversible phosphorylation of cofilin in kidney tubular (LLC-PK1 and Madin-Darby canine kidney) cells. Hyperosmolarity-provoked cofilin phosphorylation was mediated by the Rho/Rho kinase (ROCK)/LIM kinase (LIMK) but not the Rac/PAK/LIMK pathway, because 1) dominant negative (DN) Rho and DN-ROCK but not DN-Rac and DN-PAK inhibited cofilin phosphorylation; 2) constitutively active (CA) Rho and CA-ROCK but not CA-Rac and CA-PAK induced cofilin phosphorylation; 3) hyperosmolarity induced LIMK-2 phosphorylation, and 4) inhibition of ROCK by Y-27632 suppressed the hypertonicity-triggered LIMK-2 and cofilin phosphorylation. We then examined whether cofilin and its phosphorylation play a role in the hypertonicity-triggered F-actin changes. Downregulation of cofilin by small interfering RNA increased the resting F-actin level and eliminated any further rise upon hypertonic treatment. Inhibition of cofilin phosphorylation by Y-27632 prevented the hyperosmolarity-provoked F-actin increase. Taken together, cofilin is necessary for maintaining the osmotic responsiveness of the cytoskeleton in tubular cells, and the Rho/ROCK/LIMK-mediated cofilin phosphorylation is a key mechanism in the hyperosmotic stress-induced F-actin increase

    Effect of insulin on cellular and molecular mechanisms of wound healing in diabetes.

    No full text
    <p>Insulin induces activation of IR/SHC/ERK and IR/IRS/PI3K/AKT pathways in wound healing, which are canonical insulin signaling pathways. On the upper right-hand side, AKT is shown to increase VEGF (probably from macrophages, fibroblasts and epithelial cells) that will induce the phosphorylation and activation of eNOS in bone marrow, with consequent mobilization of EPCs to the circulation. SDF1α induces the homing of these EPC at the injury site, where they participate in neovasculogenesis. Insulin cream increased VEGF and SDF1α tissue expression in wound healing, and also increased eNOS phosphorylation in the bone marrow of an animal model of diabetes.</p

    Days to achieve complete healing in wounded control rats (WC), wounded control rats that received the insulin cream (WCI), wounded diabetic rats (WD), and wounded diabetic rats that received insulin cream (WDI).

    No full text
    <p>(A) Wound area was quantified every day and expressed as the percentage of the original wound area. (B) Wound extracts were prepared as described in<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036974#s2" target="_blank"><i>Materials and Methods</i></a> four days after the wound incision and were immunoblotted with (C) anti-IRS-1, (D) anti-SHC, (E) anti-phospho-AKT, (F) anti-phospho-ERK1/2, (G) anti-phospho-GSK3, and (H) anti-phospho-eNOS antibodies. To determine the protein levels of AKT, ERK1/2, GSK3, and eNOS, the membranes were stripped and reprobed with anti-AKT, -ERK1/2, -GSK3 and -eNOS. Equal protein loading was confirmed by reblotting the membranes with anti-β-actin. Data were compared by ANOVA and Bonferroni post-test, and represented by the mean and standard deviation for each group of scanning densitometry of six different animals per group, and the bar graphs represent the ratio of phosphorylation/protein. *p<0.05 between groups; **p<0.05 <i>vs.</i> WCI.</p
    corecore