1,852 research outputs found

    Smart Plastic Antibody Material for Hemoglobin Tailored by Silica Surface Imprinting and with Charged Binding Sites: Its use as Ionophore in Potentiometric Transduction

    Get PDF
    JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013Human hemoglobin (Hb) is a globular metalloprotein, present in the blood and involved in gas transport. Hb-associated disturbances are related to several diseases, such thalassemia, anemia, heart disease and leukemia, or to side-effects from other diseases, such as cancer. Overall, it is of great importance to know the concentration of Hb in the blood in many health-related conditions. There are many methods described in the literature for determining Hb. Most of these rely on antibody/antigen interactions, due to the high selectivity of the affinity reaction taking place between these biomolecules. However, the use of antibodies for Hb determination in routine clinical use is very expensive, due to the high cost of the material, the need for special handling and storage, and the non-reusability. These constraints may be limited by replacing natural antibodies by plastic receptors, obtained by molecular imprinting procedures. Thus, this work describes a novel smart plastic antibody material (SPAM) by surface imprinting technique for the detection of Hb and its application to design small, portable and low cost potentiometric devices. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its subsequent interaction with different vinyl monomers, of different chemical functions and ionic charges. Control materials were designed in parallel to assess the ability of establishing stereochemical recognition of Hb and the effect of the kind/charge of the monomers employed. Scanning Electron Microscopy analysis confirmed the surface modification of the silica material used for imprint. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Suitable emf variations were detected only for selective membranes having a SPAM material and a charged lipophilic anionic additive. All control materials were unable to produce a potentiometric response. Overall, good features were obtained for SPAM-based selective membranes carrying an anionic lipophilic additive. In HEPES buffer of pH 5, limits of detection were 43.8μg/mL for a linear response after 83.8μg/mL with a cationic slope of +40.4mV/decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results

    Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: Investigation of the role of gender

    Get PDF
    Resveratrol (3,5,40-trihydroxy-trans stilbene) is commonly recognized by its antioxidant properties. Despite its beneficial qualities, the toxic effects of this natural compound are still unknown. Since mitochondria are essential to support the energy-dependent regulation of several cell functions, the objective of this study was to evaluate resveratrol effects on rat brain and liver mitochondrial fractions from male and females regarding oxidative stress and bioenergetics. No basal differences were observed between mitochondrial fractions from males and females, except in liver mitochondria, the generation of H2O2 by the respiratory chain is lower for female preparations. Resveratrol inhibited lipid peroxidation in preparations from both genders and organs. Furthermore, brain mitochondria in both gender groups appeared susceptible to resveratrol as seen by a decrease in state 3 respiration and alterations in mitochondrial membrane potential fluctuations during ADP phosphorylation. As opposed, liver mitochondria were less affected by resveratrol. Our data also demonstrates that resveratrol inhibits complex I activity in all mitochondrial preparations. The results suggest that brain mitochondria appear to be more susceptible to resveratrol effects, and gender appears to play a minor role. It remains to be determined if resveratrol effects on brain mitochondria contribute to deterioration of mitochondrial function or instead to mediate hormesis-mediated events.This work is supported by PTDC/AGR-ALI/108326/2008 to M.S.S. from the Portuguese Foundation for Science and Technology, FEDER/ Compete/National Funds. A.C.M., A.M.S. and V.A.S. are recipient of SFRH/BD/33892/2009, SFRH/BD/76086/2011 and SFRH/BPD/ 31549/2006 fellowships, respectively

    Biopolymeric matrices for structural and functional stabilization of bacteriophages

    Get PDF
    In the recent past years, bacteriophage research has experienced a renaissance due to their potential application in the pharmaceutical field, especially with the increase of bacterial resistance to antibiotics and the possibility to take part in new methods of early detection and diagnosis of bacterial infections. In that context, the structural and functional stabilization of bacteriophages using biopolymeric microporous hydrogels represents a promising research focus with a broad potential biomedical/ biopharmaceutical application. The scope of this work was to develop biopolymeric non-toxic phage-hydrogels of agar and sodium alginate, obtained at neutral pH and mild polymerization conditions, in order to offer adequate characteristics to the maintenance of phage’s lytic activity. Disc-like phage-hydrogels were prepared, with a phage and polymer concentration of 1.3x108 PFU/ml and 1.5% (w/v), respectively. Regarding the alginate hydrogels, CaCO3 (22.5 mM) and GDL (48 mM) were also included in the formulation. Agar hydrogels were prepared naturally by jellification, as a function of temperature lowering, and alginate hydrogels were prepared by internal gelation. The matrices were inoculated with a suspension of susceptible (host) bacteria and incubated at 37 ºC for 24h. Observation of bacterial lawn’s lysis demonstrated that bacteriophages kept their lytic activity, being the method of physical entrapment able to promote their stabilization. Cryo-SEM analysis revealed that both types of phage-hydrogels present interconnective microporous network, which guaranties a facilitated access of the phages to the bacteria, ensuring an efficient lysis of the host bacteria present in the surface of the hydrogels.The developed hydrogels also present appropriate physical and chemical properties for a wider variety of applications in the field of pharmaceutical sciences, such as controlled release of (macro)molecules, cell immobilization and 3D support for tissue regeneration

    Thermodynamic study of racemic ibuprofen separation by liquid chromatography using cellulose-based stationary phase

    Get PDF
    Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID), also known for its significant antipyretic and analgesic properties. This chiral drug is commercialized in racemic form; however, only S-(+)-ibuprofen has clinical activities. In this paper the effect of temperature change (from 288.15 to 308.15 K) on the ibuprofen resolution was studied. A column ( mm) packed with tris(3,5-dimethylphenylcarbamate) was used to obtain the thermodynamic parameters, such as enthalpy change (), entropy change (), variation enthalpy change (), variation entropy change (), and isoenantioselective temperature (). The mobile phase was a combination of hexane (99%), isopropyl alcohol (1%), and TFA (0.1%), as an additive. The conditions led to a selectivity of 1.20 and resolution of 4.55. The first peak, R-(−)-ibuprofen, presented an enthalpy change of 7.21 kJ/mol and entropy change of 42.88 kJ/K·mol; the last peak, S-(+)-ibuprofen, has an enthalpy change of 8.76 kJ/mol and 49.40 kJ/K·mol of entropy change2016CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQsem informaçã

    Paludibacterium

    Get PDF
    Curved rods, non-spore forming and Gram-negative. Motile by means of a single polar flagellum. Facultative anaerobe. Reacts positively for the catalase and cytochrome c oxidase tests. Nitrate reduction is variable among genus members and indole is not produced. The major respiratory quinone is ubiquinone 8 (Q-8). Fatty acid composition is variable within the genus, although summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and C16:0 are predominant in all species. The polar lipid profile consists of phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), among other unidentified aminophospholipids, phospholipids, and polar lipids.info:eu-repo/semantics/acceptedVersio

    Innovative approach for decolorizing textile effluents using yeast-alginate capsules

    Get PDF
    Textile industry is an economic activity that produces high volumes of effluents used in fabric processing that are discharged in the environment [1]. These discharged effluents loaded with synthetic dyes and other chemicals, are resistant to biodegradation and persistent in water, and are responsible for toxicity and mutagenic effects on the aquatic life, causing a potential risk to the aquatic ecosystems [2]. Traditionally, industry uses classic chemical methods to treat these effluents that are expensive and potentially harmful, since it could further generate large quantities of toxic by-products that are also difficult to eliminate [3]. In order to aid and complement the traditional wastewater treatment, a yeast-based solution for decolorization of textile industrial wastewater is under evaluation. This research aims to develop a new and innovative biological solution for the effective decolorization of the textile effluents usingalginate-calcium capsules filled with a proven decolorizing yeast.info:eu-repo/semantics/publishedVersio

    New Quantum-Dot-Based Fluorescent Immunosensor for Cancer Biomarker Detection

    Get PDF
    Cancer antigen 15-3 (CA 15-3) is a biomarker for breast cancer used to monitor response to treatments and disease recurrence. The present work demonstrates the preparation and application of a fluorescent biosensor for ultrasensitive detection of the cancer antigen CA 15-3 protein tumor marker using mercaptopropionic-acid-functionalized cadmium telluride (CdTe@MPA) quantum dots (QDs) conjugated with CA 15-3 antibodies. First, the QDs were synthesized by the hydrothermal route, resulting in spherical nanoparticles up to 3.50 nm in diameter. Subsequently, the QD conjugates were characterized by Fourier transform infrared spectroscopy (FTIR), UV absorption, and fluorescence. The interaction between the conjugates and the protein was studied by fluorescence spectroscopy in buffer and in 10-fold diluted commercial human serum. Calibration in spiked serum samples gave a detection limit of 0.027 U/mL, 1000-fold lower than the clinical limit for CA 15-3 (25 U/mL to 30 U/mL), indicating that this is an ultrasensitive technique. In addition, a rapid response was obtained within 10 min. The biosensor was selective in the presence of the interfering serum proteins BSA, CEA, and CA-125, with a maximum interference of 2% for BSA. The percent recovery was close to 100% with maximum relative standard deviation (RSD%) values of 1.56. Overall, the developed CA 15-3 biosensor provides a simple and sensitive method for ultrasensitive monitoring of breast cancer, as well as the ability to detect other molecules of interest in human serum matrices.This research was funded by Fundação para a Ciência e Tecnologia, I.P, grant number 2022.09032.PTDCinfo:eu-repo/semantics/publishedVersio
    corecore