55 research outputs found

    Communication satisfaction and job satisfaction among critical care nurses and their impact on burnout and intention to leave : a questionnaire study

    Get PDF
    To investigate the relationship between communication and job satisfaction and their association with intention to leave and burnout among intensive care unit nurses.A multicentre questionnaire study.Intensive care nurses (n = 303) from three Flemish hospitals.Communication satisfaction assessed by the Communication Satisfaction Questionnaire, intention to leave through the Turnover Intention Scale (from the Questionnaire for the Perception and Assessment of Labour) and burnout by the Maslach Burnout Inventory. Job satisfaction was measured by a visual analogue scale.Average job satisfaction was 7.66 ± 1.34/10. Nurses were most satisfied about 'Communication with supervisor' (68.46%), and most dissatisfied about 'Organisational perspectives' (34.12%). Turnover intention was low among 49.5% (150/290) and high among 6.6% (20/290). Three percent (9/299) of intensive care nurses were at risk for burnout. All dimensions of communication satisfaction were moderately associated with job satisfaction, intention to leave and burnout.This study demonstrated high levels of communication and job satisfaction in a sample of nurses in Flanders. Intention to leave and burnout prevalence were low. To a certain extent, communication satisfaction might be associated with job satisfaction, intention to leave and burnout

    Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models

    Get PDF
    BACKGROUND: Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-β1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. CONCLUSIONS/SIGNIFICANCE: These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-β1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy

    Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

    Get PDF
    Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis

    Transcriptome Analysis of H2O2-Treated Wheat Seedlings Reveals a H2O2-Responsive Fatty Acid Desaturase Gene Participating in Powdery Mildew Resistance

    Get PDF
    Hydrogen peroxide (H2O2) plays important roles in plant biotic and abiotic stress responses. However, the effect of H2O2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H2O2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H2O2 treatment for 6 hour in one powdery mildew (PM) resistant (PmA) and two susceptible (Cha and Han) lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H2O2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, ‘transport’ activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H2O2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H2O2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt). Eight of these genes were found to be co-regulated by H2O2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS) to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H2O2 stress and uncovers potential links between H2O2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Chlorinated biphenyls effect on estrogen-related receptor expression, steroid secretion, mitochondria ultrastructure but not on mitochondrial membrane potential in Leydig cells

    Get PDF

    Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling

    No full text
    Restoration of degraded land in the Southern Ecuadorian Andes has led to alterations in the functioning of degraded catchments. Recovery of vegetation on areas affected by overgrazing, as well as the reforestation or afforestation of gully areas have given rise to modifications of hydrological connectivity within the catchments. Recent research has highlighted the ability of gully channels to trap sediment eroded from steep slopes, especially if vegetation is established along the gully bed. However, vegetation cover not only induces sediment deposition in the gully bed, but may also have a potential to reduce runoff water volume. The performance of gully beds in reducing the transfer of runoff was investigated by conducting controlled concentrated flow experiments in the field. Experimental field data for nine gullies were derived by pouring concentrated inflow into the upstream end and measuring the outflow at the downstream end of the channel. Two consecutive flow experiments per gully were carried out, so that data for dry and wet soil conditions were collected. The hydrological response to concentrated flow was estimated for each experiment by calculating its cumulative infiltration coefficient, IC (%). The results showed a great difference in IC between dry and wet soil conditions. The IC for wet soil conditions was on average 24%, whereas it was 60% for dry conditions. Gullies with more than 50% surface vegetation cover exhibit the highest cumulative infiltration coefficients (81% for dry runs, and 34% for wet runs), but runoff transmission losses were not as clearly related to Correspondence to: A. Molina (molina [email protected]) vegetation cover as sediment storage as shown in Molina et al. (2009). The experimental field data of 16 experiments were used to calibrate a hydrological model developed by Fiener and Auerswald (2005) in order to simulate the transfer of concentrated flow along the gully beds. The calibrated model was able to simulate the transfer of runoff water well, as the error on the simulated total outflow volumes is below 13% for 15 out of 16 cases. However, predicting infiltration amounts is difficult: the high sensitivity of model results to some crucial hydraulic parameters (runoff width, hydraulic conductivity and sorptivity) is one of the reasons why the relationships between model parameter values and gully features are relatively weak. The results obtained from the field experiments show that gully systems are key elements in the hydrological connectivity of degraded landscapes. The transfer of overland flow and sediment from the slopes towards the river system highly depends on the presence/absence of vegetation in the gully beds and should therefore be accounted for in assessments of landscape degradation and/or recovery.status: publishe
    corecore