30 research outputs found

    BACE2 distribution in major brain cell types and identification of novel substrates

    Get PDF
    β-Site APP-cleaving enzyme 1 (BACE1) inhibition is considered one of the most promising therapeutic strategies for Alzheimer's disease, but current BACE1 inhibitors also block BACE2. As the localization and function of BACE2 in the brain remain unknown, it is difficult to predict whether relevant side effects can be caused by off-target inhibition of BACE2 and whether it is important to generate BACE1-specific inhibitors. Here, we show that BACE2 is expressed in discrete subsets of neurons and glia throughout the adult mouse brain. We uncover four new substrates processed by BACE2 in cultured glia: vascular cell adhesion molecule 1, delta and notch-like epidermal growth factor-related receptor, fibroblast growth factor receptor 1, and plexin domain containing 2. Although these substrates were not prominently cleaved by BACE2 in healthy adult mice, proinflammatory TNF induced a drastic increase in BACE2-mediated shedding of vascular cell adhesion molecule 1 in CSF. Thus, although under steady-state conditions the effect of BACE2 cross-inhibition by BACE1-directed inhibitors is rather subtle, it is important to consider that side effects might become apparent under physiopathological conditions that induce TNF expression

    MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease

    Get PDF
    Neuronal cell loss is a defining feature of Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD

    LRRK2 expression is enriched in the striosomal compartment of mouse striatum

    No full text
    In spite of a clear genetic link between Parkinson's disease (PD) and mutations in LRRK2, cellular localization and physiological function of LRRK2 remain debated. Here we demonstrate the immunohistochemical localization of LRRK2 in adult mouse and early postnatal mouse brain development. Antibody specificity is verified by absence of specific staining in LRRK2 knockout mouse brain. Although LRRK2 is expressed in various mouse brain regions (i.e. cortex, thalamus, hippocampus, cerebellum), strongest expression is detected in striatum, whereas LRRK2 protein expression in substantia nigra pars compacta in contrast is low. LRRK2 is highly expressed in striatal medium spiny neurons (MSN) and few cholinergic interneurons. LRRK2 expression is undetectable in other interneurons, oligodendrocytes or astrocytes of the striatum. Interestingly, LRRK2 expression is associated with striosome specific markers (i.e. MOR1, RASGRP1). Analysis of LRRK2 expression during early postnatal development and in LRRK2 knockout mice, demonstrates that LRRK2 is not required for generation or maintenance of the striosome compartment. Comparing LRRK2-WT, LRRK2-R1441G transgenic and non-transgenic mice, changes of LRRK2 expression in striosome/matrix compartments can be detected. The findings rule out a specific requirement of LRRK2 in striosome genesis but suggest a functional role for LRRK2 in striosomes.status: publishe

    Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/Neuregulin 1 signalling

    No full text
    Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrease in excitatory synaptic markers. Electrophysiological recordings show that Aph1b is required for excitatory synaptic transmission and plasticity. Furthermore, gain and loss of function and genetic rescue experiments indicate that Nrg1 intracellular signalling promotes dendritic spine formation downstream of Aph1b-γ-secretase in vitro and in vivo. In conclusion, our study sheds light on the physiological role of Aph1b-γ-secretase in brain and provides a new mechanistic perspective on the relevance of NRG1 processing in schizophrenia.received: 2014-01-02 accepted: 2014-05-29 published: 2014-06-02status: publishe

    β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease

    No full text
    β-arrestins are associated with numerous aspects of G protein-coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that β-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimer's disease. Overexpression of β-arrestin 2 leads to an increase in amyloid-β (Aβ) peptide generation, whereas genetic silencing of Arrb2 (encoding β-arrestin 2) reduces generation of Aβ in cell cultures and in Arrb2(-/-) mice. Moreover, in a transgenic mouse model of Alzheimer's disease, genetic deletion of Arrb2 leads to a reduction in the production of Aβ(40) and Aβ(42). Two GPCRs implicated previously in Alzheimer's disease (GPR3 and the β(2)-adrenergic receptor) mediate their effects on Aβ generation through interaction with β-arrestin 2. β-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify β-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimer's disease.status: publishe

    β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer’s disease

    No full text
    β-arrestins are associated with numerous aspects of G protein-coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that β-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimer's disease. Overexpression of β-arrestin 2 leads to an increase in amyloid-β (Aβ) peptide generation, whereas genetic silencing of Arrb2 (encoding β-arrestin 2) reduces generation of Aβ in cell cultures and in Arrb2(-/-) mice. Moreover, in a transgenic mouse model of Alzheimer's disease, genetic deletion of Arrb2 leads to a reduction in the production of Aβ(40) and Aβ(42). Two GPCRs implicated previously in Alzheimer's disease (GPR3 and the β(2)-adrenergic receptor) mediate their effects on Aβ generation through interaction with β-arrestin 2. β-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify β-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimer's disease

    Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice

    No full text
    Presenilin (PS1) and (PS2) are the centers of gamma-secretase that release Abeta from APP in Alzheimer's disease (AD). They cleave signaling proteins like Notch and downregulate beta-catenin to modulate Wnt signaling. Inactivation of PS1 or PS1 and PS2 causes a prenatally lethal 'Notch phenotype,' which has hampered investigation of PS function in adulthood seriously. We have thus turned towards PS1+/-PS2-/- mice which carry the most severe reduction of PS alleles compatible with survival, to analyze the consequences of impaired PS function especially in adulthood. In these 'partial deficient' mice, PS1 protein concentration is considerably lowered, functionally reflected by reduced gamma-secretase activity and impaired beta-catenin downregulation. Their phenotype is normal up to approximately 6 months, when the majority of the mice develop an autoimmune disease characterized by dermatitis, glomerulonephritis, keratitis and vasculitis, as seen in human systemic lupus erythematosus. Besides B-cell dominated infiltrates, we observe a hypergammaglobulinemia with immune complex deposits in several tissues, high-titer nuclear autoantibodies and an increased CD4+/CD8+ ratio. The mice further develop a benign skin hyperplasia similar to human seborrheic keratosis as opposed to malignant keratocarcinomata observed in skin-specific PS1 'full' knockouts. A partial reduction of PS function in PS1+/-PS2-/- mice causes a novel phenotype in adulthood unrelated to the developmental defects of full knockouts. As PS1+/-PS2+/- mice remain healthy, this points towards a sharply defined minimum of PS function. Skin and immune system appear to be especially sensitive targets of impaired PS function and may need careful monitoring if gamma-secretase inhibitors are envisaged for treating AD.status: publishe

    The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation

    No full text
    Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously.status: publishe
    corecore