85,868 research outputs found
Strangeness magnetic form factor of the proton in the extended chiral quark model
Background: Unravelling the role played by nonvalence flavors in baryons is
crucial in deepening our comprehension of QCD. Strange quark, a component of
the higher Fock states in baryons, is an appropriate tool to investigate
nonperturbative mechanisms generated by the pure sea quark.
Purpose: Study the magnitude and the sign of the strangeness magnetic moment
and the magnetic form factor () of the proton.
Methods: Within an extended chiral constituent quark model, we investigate
contributions from all possible five-quark components to and in the four-vector momentum range (GeV/c). Probability
of the strangeness component in the proton wave function is calculated
employing the model.
Results: Predictions are obtained without any adjustable parameters.
Observables and are found to be small and negative,
consistent with the lattice-QCD findings as well as with the latest data
released by the PVA4 and HAPPEX Collaborations.
Conclusions: Due to sizeable cancelations among different configurations
contributing to the strangeness magnetic moment of the proton, it is
indispensable to (i) take into account all relevant five-quark components and
include both diagonal and non-diagonal terms, (ii) handle with care the
oscillator harmonic parameter and the component
probability.Comment: References added, typos corrected, accepted for publication by Phys.
Rev.
Chiral field theory of glueball
A chiral field theory of glueball is presented. By adding a
glueball field to a successful Lagrangian of chiral field theory of
pseudoscalar, vector, and axial-vector mesons, the Lagrangian of this theory is
constructed. The couplings between the pseodoscalar glueball field and mesons
are via U(1) anomaly revealed. Qualitative study of the physical processes of
the glueball of is presented. The theoretical
predictions can be used to identify the glueball.Comment: 29 page
Interaction-induced localization of mobile impurities in ultracold systems
The impurities, introduced intentionally or accidentally into certain
materials, can significantly modify their characteristics or reveal their
intrinsic physical properties, and thus play an important role in solid-state
physics. Different from those static impurities in a solid, the impurities
realized in cold atomic systems are naturally mobile. Here we propose an
effective theory for treating some unique behaviors exhibited by ultracold
mobile impurities. Our theory reveals the interaction-induced transition
between the extended and localized impurity states, and also explains the
essential features obtained from several previous models in a unified way.
Based on our theory, we predict many intriguing phenomena in ultracold systems
associated with the extended and localized impurities, including the formation
of the impurity-molecules and impurity-lattices. We hope this investigation can
open up a new avenue for the future studies on ultracold mobile impurities.Comment: 16 pages, 4 figure
Subdivisional spaces and graph braid groups
We study the problem of computing the homology of the configuration spaces of
a finite cell complex . We proceed by viewing , together with its
subdivisions, as a subdivisional space--a kind of diagram object in a category
of cell complexes. After developing a version of Morse theory for subdivisional
spaces, we decompose and show that the homology of the configuration spaces
of is computed by the derived tensor product of the Morse complexes of the
pieces of the decomposition, an analogue of the monoidal excision property of
factorization homology.
Applying this theory to the configuration spaces of a graph, we recover a
cellular chain model due to \'{S}wi\k{a}tkowski. Our method of deriving this
model enhances it with various convenient functorialities, exact sequences, and
module structures, which we exploit in numerous computations, old and new.Comment: 71 pages, 15 figures. Typo fixed. May differ slightly from version
published in Documenta Mathematic
Relative price variability and the Philips curve: Evidence from Turkey
We argue that relative price changes are a key component of the Phillips curve relationship between inflation and output. Building on work by Ball and Mankiw, we propose including measures of the variances and skewness of relative price adjustment in an otherwise standard model of the Phillips curve. We examine the case of Turkey, where distribution of price changes is especially skewed and where the existence of a Phillips curve has been questioned. We have two main findings: (i) inclusion of measures of the distribution of relative price changes improves our understanding of the Phillips curve trade-off; (ii) there is no evidence of such a trade-off if these measures are not included
An improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams
Taking into account more accurately the isospin dependence of nucleon-nucleon
interactions in the in-medium many-body force term of the Gogny effective
interaction, new expressions for the single nucleon potential and the symmetry
energy are derived. Effects of both the spin(isospin) and the density
dependence of nuclear effective interactions on the symmetry potential and the
symmetry energy are examined. It is shown that they both play a crucial role in
determining the symmetry potential and the symmetry energy at supra-saturation
densities. The improved single nucleon potential will be useful for simulating
more accurately nuclear reactions induced by rare isotope beams within
transport models.Comment: 6 pages including 6 figures
- …
