85,868 research outputs found

    Strangeness magnetic form factor of the proton in the extended chiral quark model

    Get PDF
    Background: Unravelling the role played by nonvalence flavors in baryons is crucial in deepening our comprehension of QCD. Strange quark, a component of the higher Fock states in baryons, is an appropriate tool to investigate nonperturbative mechanisms generated by the pure sea quark. Purpose: Study the magnitude and the sign of the strangeness magnetic moment μs\mu_s and the magnetic form factor (GMsG_M^s) of the proton. Methods: Within an extended chiral constituent quark model, we investigate contributions from all possible five-quark components to μs\mu_s and GMs(Q2)G_M^s (Q^2) in the four-vector momentum range Q21Q^2 \leq 1 (GeV/c)2^2. Probability of the strangeness component in the proton wave function is calculated employing the 3P0^3 P_0 model. Results: Predictions are obtained without any adjustable parameters. Observables μs\mu_s and GMs(Q2)G_M^s (Q^2) are found to be small and negative, consistent with the lattice-QCD findings as well as with the latest data released by the PVA4 and HAPPEX Collaborations. Conclusions: Due to sizeable cancelations among different configurations contributing to the strangeness magnetic moment of the proton, it is indispensable to (i) take into account all relevant five-quark components and include both diagonal and non-diagonal terms, (ii) handle with care the oscillator harmonic parameter ω5\omega_5 and the ssˉ{s \bar s} component probability.Comment: References added, typos corrected, accepted for publication by Phys. Rev.

    Chiral field theory of 0+0^{-+} glueball

    Full text link
    A chiral field theory of 0+0^{-+} glueball is presented. By adding a 0+0^{-+} glueball field to a successful Lagrangian of chiral field theory of pseudoscalar, vector, and axial-vector mesons, the Lagrangian of this theory is constructed. The couplings between the pseodoscalar glueball field and mesons are via U(1) anomaly revealed. Qualitative study of the physical processes of the 0+0^{-+} glueball of m=1.405GeVm=1.405\textrm{GeV} is presented. The theoretical predictions can be used to identify the 0+0^{-+} glueball.Comment: 29 page

    Interaction-induced localization of mobile impurities in ultracold systems

    Get PDF
    The impurities, introduced intentionally or accidentally into certain materials, can significantly modify their characteristics or reveal their intrinsic physical properties, and thus play an important role in solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the extended and localized impurity states, and also explains the essential features obtained from several previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold systems associated with the extended and localized impurities, including the formation of the impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the future studies on ultracold mobile impurities.Comment: 16 pages, 4 figure

    Subdivisional spaces and graph braid groups

    Get PDF
    We study the problem of computing the homology of the configuration spaces of a finite cell complex XX. We proceed by viewing XX, together with its subdivisions, as a subdivisional space--a kind of diagram object in a category of cell complexes. After developing a version of Morse theory for subdivisional spaces, we decompose XX and show that the homology of the configuration spaces of XX is computed by the derived tensor product of the Morse complexes of the pieces of the decomposition, an analogue of the monoidal excision property of factorization homology. Applying this theory to the configuration spaces of a graph, we recover a cellular chain model due to \'{S}wi\k{a}tkowski. Our method of deriving this model enhances it with various convenient functorialities, exact sequences, and module structures, which we exploit in numerous computations, old and new.Comment: 71 pages, 15 figures. Typo fixed. May differ slightly from version published in Documenta Mathematic

    Relative price variability and the Philips curve: Evidence from Turkey

    Get PDF
    We argue that relative price changes are a key component of the Phillips curve relationship between inflation and output. Building on work by Ball and Mankiw, we propose including measures of the variances and skewness of relative price adjustment in an otherwise standard model of the Phillips curve. We examine the case of Turkey, where distribution of price changes is especially skewed and where the existence of a Phillips curve has been questioned. We have two main findings: (i) inclusion of measures of the distribution of relative price changes improves our understanding of the Phillips curve trade-off; (ii) there is no evidence of such a trade-off if these measures are not included

    An improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    Full text link
    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single nucleon potential and the symmetry energy are derived. Effects of both the spin(isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at supra-saturation densities. The improved single nucleon potential will be useful for simulating more accurately nuclear reactions induced by rare isotope beams within transport models.Comment: 6 pages including 6 figures
    corecore