10 research outputs found

    The Impact of Information Flow by Co-Shareholder Relationships on the Stock Returns: A Network Feature Perspective

    No full text
    One shareholder may invest in different listed energy companies, so the information held by common shareholders can be transmitted among companies. Based on the two-mode complex network method, we construct an information flow shareholder-based network and employ different network indicators representing features of information flow as variables to construct panel regression models to analyze the impact of information flow among listed energy companies on the stock returns. The results indicate that the information flow of listed energy companies are increasingly important and play a significant role over a period. The efficiency of information flow among listed energy companies is increasingly high and the network information is concentrated among a few of these companies. The efficiency of information flow and the independence of listed energy companies are significantly positively related to stock returns, while the listed energy companies’ ability to control information is not significantly related to stock returns. We employ a new perspective to analyze the information flow on how to influence stock returns, and offer some related suggestions for investors and policy makers in the future

    Evolution Characteristics and Regional Roles’ Influencing Factors of Interprovincial Population Mobility Network in China

    No full text
    This paper analyses the evolutionary characteristics of the interprovincial population mobility network structure in China and explores the roles of provinces from 2010 to 2015. By constructing the interprovincial population mobility network, we examine the provinces’ functions during periods of population mobility through population mobility diversity, population mobility, and population mobility intermediation. The results show that the coverage and tightness of the interprovincial population mobility network were influenced by national economic development, increasing steadily from 2010 to 2014 and then suddenly falling in 2015. The regions that played essential roles in the province’s mobility diversity and intermediation showed a dispersion trend. In contrast, areas that played a vital role in the inflows or outflows were relatively concentrated and stable. Additionally, this work further explores how economic factors, e.g., GDP, residents’ consumption levels, total population, unemployment rate, and consumer price index, are used as independent variables to analyse the provinces’ roles in the interprovincial population mobility network. The analysis shows that the inflow or outflow volumes are easily affected by the five indices. These five indices are significantly related to network role indicators to different extents

    High-Power Continuously Tunable Terahertz Beat Note Generation Based on a Generic Photonic Integration Platform

    No full text
    We generate a continuously tunable terahertz beat note, with a maximum output power of 50 mW and frequency range from 807 to 915 GHz, by using the device implemented on a generic photonic integration platform

    A Motif-Based Analysis to Reveal Local Implied Information in Cross-Shareholding Networks

    No full text
    Cross-shareholding is a new type of strategic means for capital operation and is an important component of corporate governance. With the increasing complexity of business motivation, the structure of a cross-shareholding network (CSN) is becoming more intricate, and it exposes various important local patterns with different economic functions. The goal of this paper is to uncover investment mechanisms and economic functions implied in cross-shareholding networks (CSNs) by analyzing the local characteristic patterns of company interactions. In this paper, we construct the CSNs of listed companies and extract the directed triadic motifs to reveal the evolutionary characteristics of local investment patterns at the company and industry levels. On the company level, we find that companies tend to form V-shaped structures with other companies, but bidirectional shareholding patterns and circular relationships in the triads are scarce. On the industry level, we identify the characteristic linking patterns of some industries with a role analysis of the industries. Furthermore, we detect the evolutionary characteristics of industry interrelationships in three implied patterns. Such a motif evolution analysis may provide valuable information for investors and supervisory departments that make decisions about investment portfolios and policy. Meanwhile, this study is also helpful for exploring the implied information in other empirical networks

    The pathogenesis and potential therapeutic targets in sepsis

    No full text
    Abstract Sepsis is defined as “a life‐threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection.” At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis‐related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis

    Directly Probing Charge Separation at Interface of TiO2 Phase Junction

    No full text
    Phase junction is often recognized as an effective strategy to achieve efficient charge separation in photocatalysis and photochemistry. As a crucial factor to determine the photogenerated charges dynamics, there is an increasingly hot debate about the energy band alignment across the interface of phase junction. Herein, we reported the direct measurement of the surface potential profile over the interface of TiO2 phase junction. A built-in electric field up to 1 kV/cm from rutile to anatase nanoparticle was detected by Kelvin Probe Force Microscopy (KPFM). Home-built spatially resolved surface photovoltage spectroscopy (SRSPS) supplies a direct evidence for the vectorial charge transfer of photogenerated electrons from rutile to anatase. Moreover, the tunable anatase nanoparticle sizes in TiO2 phase junction leads to high surface photovoltage (SPV) by creating completely depleted space charge region (SCR) and enhancing the charge separation efficiency. The results provide a strong basis for understanding the impact of built-in electric field on the charge transfer across the interface of artificial photocatalysts

    Millimeter-wave generation using hybrid silicon photonics

    Get PDF
    Technological innovation with millimeter waves (mm waves), signals having carrier frequencies between 30 and 300 GHz, has become an increasingly important research field. While it is challenging to generate and distribute these high frequency signals using all-electronic means, photonic techniques that transfer the signals to the optical domain for processing can alleviate several of the issues that plague electronic components. By realizing optical signal processing in a photonic integrated circuit (PIC), one can considerably improve the performance, footprint, cost, weight, and energy efficiency of photonics-based mm-wave technologies. In this article, we detail the applications that rely on mm-wave generation and review the requirements for photonics-based technologies to achieve this functionality. We give an overview of the different PIC platforms, with a particular focus on hybrid silicon photonics, and detail how the performance of two key components in the generation of mm waves, photodetectors and modulators, can be optimized in these platforms. Finally, we discuss the potential of hybrid silicon photonics for extending mm-wave generation towards the THz domain and provide an outlook on whether these mm-wave applications will be a new milestone in the evolution of hybrid silicon photonics
    corecore