142 research outputs found

    Expression, purification and characterization of the Lily symptomless virus coat protein from Lanzhou Isolate

    Get PDF
    Background: Lily symptomless virus (LSV) is widespread in many countries where lily are grown or planted, and causes severe economic losses in terms of quantity and quality of flower and bulb production. To study the structure-function relationship of coat protein (CP) of LSV, to investigate antigenic relationships between coat protein subunits or intact virons, and to prepare specific antibodies against LSV, substantial amounts of CP protein are needed. Results: Thus, full-length cDNA of LSV coat protein was synthesized and amplified by RT-PCR from RNA isolated from LSV Lanzhou isolate. The extended 33.6 kDa CP was cloned and expressed prokaryoticly and then purified by Ni-ion affinity chromatography. Its identity and antigenicity of recombinant CP were identified on Western-blotting by using the prepared anti-LSV antibodies. Conclusions: The results indicate that fusion CP maintains its native antigenicity and specificity, providing a good source of antigen in preparation of LSV related antibodies. Detailed structural analysis of a pure recombinant CP should allow a better understanding of its role in cell attachment and LSV tropism. This investigation to LSV should provide some specific antibodies and aid to development a detection system for LSV diagnostics and epidemiologic surveys

    A Cryophyte Transcription Factor, CbABF1, Confers Freezing, and Drought Tolerance in Tobacco

    Get PDF
    Abscisic acid responsive element binding factors (ABFs) play crucial roles in plant responses to abiotic stress. However, little is known about the roles of ABFs in alpine subnival plants, which can survive under extreme environmental conditions. Here, we cloned and characterized an ABF1 homolog, CbABF1, from the alpine subnival plant Chorispora bungeana. Expression of CbABF1 was induced by cold, drought, and abscisic acid. Subcellular localization analysis revealed that CbABF1 was located in the nucleus. Further, CbABF1 had transactivation activity, which was dependent on the N-terminal region containing 89 residues. A Snf1-related protein kinase, CbSnRK2.6, interacted with CbABF1 in yeast two-hybrid analysis and bimolecular fluorescence complementation assays. Transient expression assay revealed that CbSnRK2.6 enhanced the transactivation of CbABF1 on ABRE cis-element. We further found that heterologous expression of CbABF1 in tobacco improved plant tolerance to freezing and drought stress, in which the survival rates of the transgenic plants increased around 40 and 60%, respectively, compared with wild-type plants. Moreover, the transgenic plants accumulated less reactive oxygen species, accompanied by high activities of antioxidant enzymes and elevated expression of stress-responsive genes. Our results thus suggest that CbABF1 is a transcription factor that plays an important role in cold and drought tolerance and is a candidate gene in molecular breeding of stress-tolerant crops

    A trehalose biosynthetic enzyme doubles as an osmotic stress sensor to regulate bacterial morphogenesis

    Get PDF
    The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3. In response to osmotic stress, this and other Arthrobacter species undergo a transition from bacillary to myceloid growth. An otsA null mutant exhibits constitutive myceloid growth. Osmotic stress leads to a depletion of trehalose-6-phosphate, the product of the OtsA enzyme, and experimental depletion of this metabolite also leads to constitutive myceloid growth independent of OtsA function. In vitro analyses indicate that OtsA can self-assemble into protein networks, promoted by trehalose-6-phosphate, a property that is not shared by the equivalent enzyme from E. coli, despite the latter's enzymatic activity when expressed in Arthrobacter. This, and the localization of the protein in non-stressed cells at the mid-cell and poles, indicates that OtsA from Arthrobacter likely functions as a cytoskeletal element regulating cell morphology. Recruiting a biosynthetic enzyme for this morphogenetic function represents an intriguing adaptation in bacteria that can survive in extreme environments

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Endogenous Hormones and Biochemical Changes during Flower Development and Florescence in the Buds and Leaves of Lycium ruthenicum Murr

    No full text
    Lycium ruthenicum Murr. is one of the most important shrubs grown in northwest China. Healthy buds and leaves of L. ruthenicum Murr. were selected for the present study. Flower development was divided into six stages, namely, flower bud pre-differentiation (I), late flower differentiation (II), squaring stage (III), dew crown period (IV), open stage (V) and senescent stage (VI). Endogenous hormone content and specific value, soluble sugar, sucrose, starch, and soluble protein were measured, and ABA/IAA, ABA/GA3, ZR/IAA, ZR/GA3, and C/N were calculated in buds and leaves at stage VI. The results showed that ABA, GA3, and ZR content of buds significantly increased from flower bud pre-differentiation to late flower differentiation stage. However, ABA, GA3, and ZR content of leaves had the opposite change trend. From open stage to senescent stage, IAA, ABA, and GA3 content of buds and leaves significantly increased in L. ruthenicum Murr. However, ZR content of buds and leaves significantly decreased from open stage to senescent stage. ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 values of buds significantly increased from lower bud pre-differentiation to late flower differentiation stage. However, ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 values of leaves significantly decreased from lower bud pre-differentiation to late flower differentiation stage. ABA/IAA and ABA/GA3 of buds significantly increased from open stage to senescent stage, but ZR/IAA and ZR/GA3 of buds significantly decreased from open to senescent. At this stage, ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 significantly decreased in L. ruthenicum Murr. The higher soluble sugar and sucrose content in the buds and leaves were beneficial to the flower bud differentiation of L. ruthenicum. The increasing of soluble sugar improved the energy basis to florescence and senescent. The carbohydrates metabolism enhanced from open stage to senescent stage and nitrogen metabolism reduced from open stage to senescent stage of L. ruthenicum
    • …
    corecore