44 research outputs found

    First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors

    Get PDF
    We report a simple first-principles-based simulation model (combining quantum mechanics with Marcus−Hush theory) that provides the quantitative structural relationships between angular resolution anisotropic hole mobility and molecular structures and packing. We validate that this model correctly predicts the anisotropic hole mobilities of ruberene, pentacene, tetracene, 5,11-dichlorotetracene (DCT), and hexathiapentacene (HTP), leading to results in good agreement with experiment

    Amplified role of potential HONO sources in O3 formation in North China Plain during autumn haze aggravating processes

    Get PDF
    Co-occurrences of high concentrations of PM2.5 and ozone (O-3) have been frequently observed in haze-aggravating processes in the North China Plain (NCP) over the past few years. Higher O-3 concentrations on hazy days were hypothesized to be related to nitrous acid (HONO), but the key sources of HONO enhancing O-3 during haze-aggravating processes remain unclear. We added six potential HONO sources, i.e., four groundbased (traffic, soil, and indoor emissions, and the NO2 heterogeneous reaction on ground surface (Het(ground))) sources, and two aerosol-related (the NO2 heterogeneous reaction on aerosol surfaces (Het(aerosol)) and nitrate photolysis (Phot(nitrate))) sources into the WRF-Chem model and designed 23 simulation scenarios to explore the unclear key sources. The results indicate that ground-based HONO sources producing HONO enhancements showed a rapid decrease with height, while the NO C OH reaction and aerosol-related HONO sources decreased slowly with height. Photnitrate contributions to HONO concentrations were enhanced with aggravated pollution levels. The enhancement of HONO due to Phot(nitrate) on hazy days was about 10 times greater than on clean days and Phot(nitrate) dominated daytime HONO sources (similar to 30 %-70% when the ratio of the photolysis frequency of nitrate (J(nitrate)) to gas nitric acid (JHNO(3)) equals 30) at higher layers (>800 m). Compared with that on clean days, the Phot(nitrate) contribution to the enhanced daily maximum 8 h averaged (DMA8) O-3 was increased by over 1 magnitude during the haze-aggravating process. Phot(nitrate) contributed only similar to 5% of the surface HONO in the daytime with a J(nitrate) =JHNO(3) ratio of 30 but contributed similar to 30 %-50% of the enhanced O-3 near the surface in NCP on hazy days. Surface O-3 was dominated by volatile organic compound-sensitive chemistry, while O-3 at higher altitudes ( >800 m) was dominated by NOx-sensitive chemistry. Phot(nitrate) had a limited impact on nitrate concentrations (Peer reviewe

    Global-regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module

    Get PDF
    Aerosol microphysical processes are essential for the next generation of global and regional climate and air quality models to determine particle size distribution. The contribution of organic aerosols (OAs) to particle formation, mass, and number concentration is one of the major uncertainties in current models. A new global–regional nested aerosol model was developed to simulate detailed microphysical processes. The model combines an advanced particle microphysics (APM) module and a volatility basis set (VBS) OA module to calculate the kinetic condensation of low-volatility organic compounds and equilibrium partitioning of semi-volatile organic compounds in a 3-D framework using global–regional nested domain. In addition to the condensation of sulfuric acid, the equilibrium partitioning of nitrate and ammonium, and the coagulation process of particles, the microphysical processes of the OAs are realistically represented in our new model. The model uses high-resolution size bins to calculate the size distribution of new particles formed through nucleation and subsequent growth. The multi-scale nesting enables the model to perform high-resolution simulations of the particle formation processes in the urban atmosphere in the background of regional and global environments. By using the nested domains, the model reasonably reproduced the OA components obtained from the analysis of aerosol mass spectrometry measurements through positive matrix factorization and the particle number size distribution in the megacity of Beijing during a period of approximately a month. Anthropogenic organic species accounted for 67 % of the OAs of secondary particles formed by nucleation and subsequent growth, which is considerably larger than that of biogenic OAs. On the global scale, the model well predicted the particle number concentration in various environments. The microphysical module combined with the VBS simulated the universal distribution of organic components among the different aerosol populations. The model results strongly suggest the importance of anthropogenic organic species in aerosol particle formation and growth at polluted urban sites and over the whole globe.Aerosol microphysical processes are essential for the next generation of global and regional climate and air quality models to determine particle size distribution. The contribution of organic aerosols (OAs) to particle formation, mass, and number concentration is one of the major uncertainties in current models. A new global-regional nested aerosol model was developed to simulate detailed microphysical processes. The model combines an advanced particle microphysics (APM) module and a volatility basis set (VBS) OA module to calculate the kinetic condensation of low-volatility organic compounds and equilibrium partitioning of semi-volatile organic compounds in a 3-D framework using global-regional nested domain In addition to the condensation of sulfuric acid, the equilibrium partitioning of nitrate and ammonium, and the coagulation process of particles, the microphysical processes of the OAs are realistically represented in our new model. The model uses high-resolution size bins to calculate the size distribution of new particles formed through nucleation and subsequent growth. The multi-scale nesting enables the model to perform high-resolution simulations of the particle formation processes in the urban atmosphere in the background of regional and global environments. By using the nested domains, the model reasonably reproduced the OA components obtained from the analysis of aerosol mass spectrometry measurements through positive matrix factorization and the particle number size distribution in the megacity of Beijing during a period of approximately a month. Anthropogenic organic species accounted for 67 % of the OAs of secondary particles formed by nucleation and subsequent growth, which is considerably larger than that of biogenic OAs. On the global scale, the model well predicted the particle number concentration in various environments. The microphysical module combined with the VBS simulated the universal distribution of organic components among the different aerosol populations. The model results strongly suggest the importance of anthropogenic organic species in aerosol particle formation and growth at polluted urban sites and over the whole globe.Peer reviewe

    Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N₂O emissions from soil

    Get PDF
    Background Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments. Results AMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene. Conclusions The cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation

    Raindrop Size Distribution Characteristics for Tropical Cyclones and Meiyu-Baiu Fronts Impacting Tokyo, Japan

    No full text
    Tropical cyclones and meiyu-baiu fronts, as the two main synoptic systems over East Asia, bring heavy rain during summers, but their long-term and vertical raindrop size distribution (RSD) features over the midlatitude Japan Islands are limited. Radar-based quantitative precipitation estimation (QPE) techniques require RSD observations. In this study, five-year observations from Tokyo with a ground-based impact Joss-Waldvogel disdrometer (JWD) and a vertically pointing micro rain radar (MRR) with a vertical range of 0.2–6.0 km were used to study the vertical structures of RSD and QPE parameters. The results showed that the convective rain associated with tropical cyclones had a maritime nature, while the rain associated with the meiyu-baiu front had a continental nature. The rain associated with tropical cyclones had a relatively higher concentration of raindrops and a larger average raindrop diameter than the rain associated with the meiyu-baiu front. The Z–R (radar reflectivity-rain rate) relationships (Z = ARb) based on the JWD data for tropical cyclones, the meiyu-baiu front and total summer rainfall in Tokyo were Z = 189 R1.38, Z = 214 R1.35 and Z = 212 R1.33, respectively. When the Z–R relationships obtained in this study were used to replace the operational relationship of Z = 300 R1.4, the standard deviation of the rain rate was reduced from 5.50 mm/h (2.34 mm/h) to 2.34 mm/h (1.32 mm/h) for typhoon (meiyu-baiu front) rainfall, although the change for total summer rainfall was small. In addition, with increasing height below 4 km, the value of A and b decreased

    Behaviors of Tropospheric Water-soluble Particles-model description and simulation of the eruption of Miyakejima-

    No full text
    気象モデルと連結したエアロゾルモデルシステム(MSSP:Regional Eulerian ModelSystem for Soluble Particles) を構築した。MSSPは酸性雨,雲物理,領域的寒冷化などに大きく寄与する水溶性エアロゾルをターゲットに発展したモデルであり,ガス・エアロゾルの発生,光化学反応,輸送,沈着,揮発性物質のガス―エアロゾル平衡,光学的特性までを予報する。また,MSSPを用いて近年類希なる二酸化硫黄を放出している三宅島火山の環境への影響を計算した。2000年7月における噴火開始から約1年に渡って,領域的な酸性化,放射収支への影響などを解析した。Developed in this study is a regional-scale aerosol transport model coupled with a meteorologicalmodel (MSSP: regional Eulerian Model System for Soluble Particles). The target of the MSSP modelis the behaviors of water-soluble particles that affect environmental acidification, cloud microphysicsand regional cooling. It calculates emissions of gas and aerosol, photochemical reactions, transport, deposition, gas-aerosol equilibrium of volatile components and aerosol optical properties. Moreover aone-year numerical simulation is provided on the environmental changes, that is regional acidificationand change on radiation budget, caused by the eruption of Miyakejima Volcano which has emitted rarelyhuge amount of sulfur dioxide since July 2000.気象モデルと連結したエアロゾルモデルシステム(MSSP:Regional Eulerian ModelSystem for Soluble Particles) を構築した。MSSPは酸性雨,雲物理,領域的寒冷化などに大きく寄与する水溶性エアロゾルをターゲットに発展したモデルであり,ガス・エアロゾルの発生,光化学反応,輸送,沈着,揮発性物質のガス―エアロゾル平衡,光学的特性までを予報する。また,MSSPを用いて近年類希なる二酸化硫黄を放出している三宅島火山の環境への影響を計算した。2000年7月における噴火開始から約1年に渡って,領域的な酸性化,放射収支への影響などを解析した。Developed in this study is a regional-scale aerosol transport model coupled with a meteorologicalmodel (MSSP: regional Eulerian Model System for Soluble Particles). The target of the MSSP modelis the behaviors of water-soluble particles that affect environmental acidification, cloud microphysicsand regional cooling. It calculates emissions of gas and aerosol, photochemical reactions, transport,deposition, gas-aerosol equilibrium of volatile components and aerosol optical properties. Moreover aone-year numerical simulation is provided on the environmental changes, that is regional acidificationand change on radiation budget, caused by the eruption of Miyakejima Volcano which has emitted rarelyhuge amount of sulfur dioxide since July 2000
    corecore