35 research outputs found

    ETHYLENE-INSENSITIVE5 Encodes a 5\u27→3\u27 Exoribonuclease Required for Regulation of the EIN3-Targeting F-Box Proteins EDF1⁄2

    Get PDF
    Ethylene is a gaseous plant growth regulator that controls a multitude of developmental and stress responses. Recently, the levels of Arabidopsis EIN3 protein, a key transcription factor mediating ethylene-regulated gene expression, have been demonstrated to increase in response to the presence of ethylene gas. Furthermore, in the absence of ethylene, EIN3 is quickly degraded through a ubiquitin/proteasome pathway mediated by two F-box proteins, EBF1 and EBF2. Here we report the identification of ETHYLENE-INSENSITIVE5 as the 5′→3′ exoribonuclease XRN4. Specifically, we demonstrate that EIN5 is a component of the ethylene signal transduction cascade acting downstream of CTR1 that is required for ethylene-mediated gene expression changes. Furthermore, we find that the ethylene insensitivity of ein5 mutant plants is a consequence of the over-accumulation of EBF1 and EBF2 mRNAs resulting in the under-accumulation of EIN3 even in the presence of ethylene gas. Together, our results suggest that the role of EIN5 in ethylene perception is to antagonize the negative feedback regulation on EIN3 by promoting EBF1 and EBF2 mRNA decay, which consequently allows the accumulation of EIN3 protein to trigger the ethylene response

    Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Get PDF
    The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2) inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs) and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries

    Deep-Learning-Based Satellite Relative Pose Estimation Using Monocular Optical Images and 3D Structural Information

    No full text
    Relative pose estimation of a satellite is an essential task for aerospace missions, such as on-orbit servicing and close proximity formation flying. However, the changeable situation makes precise relative pose estimation difficult. This paper introduces a deep-learning-based satellite relative pose estimation method for monocular optical images. The method is geared towards uncooperative target satellites with known 3D models. This paper proposes a novel convolutional neural network combined with 3D prior knowledge expressed by the 3D model in the form of the point cloud. The method utilizes point cloud convolution to extract features from the point cloud. To make the result more precise, a loss function that is more suitable for satellite pose estimation tasks is designed. For training and testing the proposed method, large amounts of data are required. This paper constructs a satellite pose estimation dataset BUAA-SID-POSE 1.0 by simulation. The proposed method is applied to the dataset and shows desirable performance on the pose estimation task. The proposed technique can be used to accomplish monocular vision-based relative pose estimation tasks in space-borne applications

    Light-Regulated, Tissue-Specific, and Cell Differentiation-Specific Expression of the Arabidopsis Fe(III)-Chelate Reductase Gene AtFRO6

    No full text
    Iron is an essential element for almost all living organisms, actively involved in a variety of cellular activities. To acquire iron from soil, strategy I plants such as Arabidopsis (Arabidopsis thaliana) must first reduce ferric to ferrous iron by Fe(III)-chelate reductases (FROs). FRO genes display distinctive expression patterns in several plant species. However, regulation of FRO genes is not well understood. Here, we report a systematic characterization of the AtFRO6 expression during plant growth and development. AtFRO6, encoding a putative FRO, is specifically expressed in green-aerial tissues in a light-dependent manner. Analysis of mutant promoter-β-glucuronidase reporter genes in transgenic Arabidopsis plants revealed the presence of multiple light-responsive elements in the AtFRO6 promoter. These light-responsive elements may act synergistically to confer light responsiveness to the AtFRO6 promoter. Moreover, no AtFRO6 expression was detected in dedifferentiated green calli of the korrigan1-2 (kor1-2) mutant or undifferentiated calli derived from wild-type explants. Conversely, AtFRO6 is expressed in redifferentiated kor1-2 shoot-like structures and differentiating calli of wild-type explants. In addition, AtFRO7, but not AtFRO5 and AtFRO8, also shows a reduced expression level in kor1-2 green calli. These results suggest that whereas photosynthesis is necessary but not sufficient, both light and cell differentiation are necessary for AtFRO6 expression. We propose that AtFRO6 expression is light regulated in a tissue- or cell differentiation-specific manner to facilitate the acquisition of iron in response to distinctive developmental cues

    Identification of Reference Genes for RT-qPCR Analysis in Gleditsia microphylla under Abiotic Stress and Hormone Treatment

    No full text
    Gleditsia microphylla is an important galactomannan gums source plant with characteristics of drought resistance, barren tolerance, and good adaptability. However, the underlying molecular mechanisms of the biological process are not yet fully understood. Real-time quantitative PCR (RT-qPCR) is an accurate and convenient method to quantify the gene expression level and transcription abundance of suitable reference genes. This study aimed to screen the best internal reference genes in G. microphylla under abiotic stresses, hormone treatments, and different tissues. Based on the transcriptome data, twelve candidate reference genes were selected, and ultimately, nine of them were further evaluated by the geNorm, NormFinder, BestKeeper, and RefFinder algorithms. These results show that TATA-binding protein 1 (TBP1)and Eukaryotic translation initiation factor 4A1 (EIF4A1)were the two most stable reference genes, and glyceraldehyde-3-phosphate dehydrogenase A subunit, chloroplastic (GAPA)and glyceraldehyde-3-phosphate dehydrogenase B subunit, chloroplastic (GAPB)were the two most unstable reference genes across all samples under the given experimental conditions. Meanwhile, the most stable reference genes varied among the different groups and tissues. Therefore, this study suggests that it is better to use a specific reference gene for a particular case rather than using a common reference gene

    EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings

    No full text
    The ability to switch from skotomorphogenesis to photomorphogenesis is essential for seedling development and plant survival. Recent studies revealed that COP1 and phytochrome-interacting factors (PIFs) are key regulators of this transition by repressing the photomorphogenic responses and/or maintaining the skotomorphogenic state of etiolated seedlings. Here we report that the plant hormone ethylene plays a crucial role in the transition from skotomorphogenesis to photomorphogenesis by facilitating greening of etiolated seedlings upon light irradiation. Activation of EIN3/EIL1 is both necessary and sufficient for ethylene-induced enhancement of seedling greening, as well as repression of the accumulation of protochlorophyllide, a phototoxic intermediate of chlorophyll synthesis. EIN3/EIL1 were found to induce gene expression of two key enzymes in the chlorophyll synthesis pathway, protochlorophyllide oxidoreductase A and B (PORA/B). ChIP and EMSA assays demonstrated that EIN3 directly binds to the specific elements present in the PORA and PORB promoters. Genetic studies revealed that EIN3/EIL1 function in cooperation with PIF1 in preventing photo-oxidative damage and promoting cotyledon greening. Moreover, activation of EIN3 reverses the blockage of greening triggered by cop1 mutation or far-red light irradiation. Consistently, EIN3 acts downstream of COP1 and its protein accumulation is enhanced by COP1 but decreased by light. Taken together, EIN3/EIL1 represent a new class of transcriptional regulators along with PIF1 to optimize de-etiolation of Arabidopsis seedlings. Our study highlights the essential role of ethylene in enhancing seedling development and survival through protecting etiolated seedlings against photo-oxidative damage

    Explorative research on glucolipid metabolism and levels of adipokines in pseudohypoparathyroidism type 1 patients

    No full text
    Abstract Background Pseudohypoparathyroidism type 1 (PHP1) is a rare disease featuring hypocalcemia and elevated PTH level. Though disturbed calcium and phosphorus metabolism under PTH resistant have been widely studied, glucolipid metabolism abnormalities observed in PHP1 patients have received little attention. The aim of this research is to explore the glucolipid metabolism features in a rather large cohort of PHP1 patient. In the current study, PHP1 patients and primary hyperparathyroidism patients as well as normal control were recruited for the investigation. Glucolipid metabolic indices as well as the level of four adipokines were examined. Results A total of 49 PHP1 patients, 64 PHPT patients and 30 healthy volunteers were enrolled. A trend of higher HOMA-β index was found in PHP1 patients than normal controls (median 97.08% vs 68.19%, p = 0.060). Both the PHP1 and PHPT group presented with significantly lower TNFα level compared to normal controls (average 10.74 pg/ml and 12.53 pg/ml vs 15.47 pg/ml, p = 0.002 and 0.041, respectively). FGF21 level was significantly higher in PHPT group than in PHP1 group (median 255.74 pg/ml vs 167.46 pg/ml, p = 0.019). No significant difference in glucolipid metabolic indices and adipokines was found between PHP1A or PHP1B patients and normal controls, while overweight/obese PHP1 patients tended to have higher leptin than normal-BMI cases (p = 0.055). Multiple linear regression analysis showed BMI rather than PTH or HOMA-IR to be an independent variable of leptin in PHP1. Conclusion Metabolic stress given upon especially overweight PHP1 patients may resulted in possible β-cell compensation. Elevated TNFα may be related with hyper-PTH level regardless of calcium level

    EIN2-directed translational regulation of ethylene signaling in arabidopsis

    No full text
    Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a “cleave and shuttle” model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3′ UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3′ UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3′ UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3′ UTR functioning as a “signal transducer” to sense and relay cellular signaling in plants
    corecore