24 research outputs found
Visualizing Exotic Orbital Texture in the Single-Layer Mott Insulator 1T-TaSe2
Mott insulating behavior is induced by strong electron correlation and can
lead to exotic states of matter such as unconventional superconductivity and
quantum spin liquids. Recent advances in van der Waals material synthesis
enable the exploration of novel Mott systems in the two-dimensional limit. Here
we report characterization of the local electronic properties of single- and
few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving
scanning tunneling microscopy and angle-resolved photoemission. Our combined
experimental and theoretical study indicates that electron correlation induces
a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by
novel orbital texture. Inclusion of interlayer coupling weakens the insulating
phase in 1T-TaSe2, as seen by strong reduction of its energy gap and quenching
of its correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. Our
results establish single-layer 1T-TaSe2 as a useful new platform for
investigating strong correlation physics in two dimensions
Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake
We measured uptake length of 15NO3− in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO3− uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO3− concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO3− uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (SWtot). Uptake length increased with specific discharge (Q/w) and increasing NO3− concentrations, showing a loss in removal efficiency in streams with high NO3− concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO3− removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO3− uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO3− uptake lengths via directly increasing both gross primary production and NO3− concentration. Gross primary production shortened SWtot, while increasing NO3− lengthened SWtot resulting in no net effect of land use on NO3− removal
Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification
We measured denitrification rates using a field 15NO3− tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWdenn) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO3− removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH4+ concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO3− concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO3− concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO3− concentration, the efficiency of NO3− removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO3− load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO3− concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO3− concentration
Stream denitrification across biomes and its response to anthropogenic nitrate loading
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 452 (2008): 202-205, doi:10.1038/nature06686.Worldwide, anthropogenic addition of bioavailable nitrogen (N) to the
biosphere is increasing and terrestrial ecosystems are becoming increasingly N
saturated, causing more bioavailable N to enter groundwater and surface waters.
Large-scale N budgets show that an average of about 20-25% of the N added to the
biosphere is exported from rivers to the ocean or inland basins, indicating
substantial sinks for N must exist in the landscape. Streams and rivers may be
important sinks for bioavailable N owing to their hydrologic connections with
terrestrial systems, high rates of biological activity, and streambed sediment
environments that favor microbial denitrification. Here, using data from 15N
tracer experiments replicated across 72 streams and 8 regions representing several
biomes, we show that total biotic uptake and denitrification of nitrate increase with
stream nitrate concentration, but that the efficiency of biotic uptake and
denitrification declines as concentration increases, reducing the proportion of instream
nitrate that is removed from transport. Total uptake of nitrate was related
to ecosystem photosynthesis and denitrification was related to ecosystem
respiration. Additionally, we use a stream network model to demonstrate that
excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate
that is exported to receiving waters and reduces the relative role of small versus
large streams as nitrate sinks.Funding for this research was provided by the National Science
Foundation
Recommended from our members
Young Adult Perspectives on a Successful Transition from Pediatric to Adult Care in Sickle Cell Disease
Objective: This qualitative study sought to learn from young adults with sickle cell disease (SCD) about their experience leaving pediatric care and perspective on what makes a successful transition. Methods: Fifteen young adults with SCD who had left pediatric care within the previous five years participated in focus groups led by a trained moderator. Transcripts were analyzed using grounded theory. Results: Four main themes emerged from the analysis: facilitators of transition (meeting the adult provider prior to transfer, knowing what to expect, gradually taking over disease self-management and starting the process early), barriers to transition (negative perceived attitude of adult staff, lack of SCD specific knowledge by both patients and staff, and competing priorities interfering with transition preparation), what young adults wished for in a transition program (opportunities to meet more staff prior to transfer, more information about the differences between pediatric and adult care, learning from a peer who has been through the process, more SCD teaching, and flexibility in transition preparation) and how they define a successful transition (gradually assuming responsibility for self-management of their SCD). Conclusion: Our findings present unique opportunities to learn from young adults with SCD about ways to improve current transition programs