14 research outputs found
Acceptability and feasibility of genital self-sampling for the diagnosis of female genital schistosomiasis: a cross-sectional study in Zambia
Background: Female genital schistosomiasis (FGS) is a neglected and disabling gynaecological disorder that is difficult to diagnose and is part of the wider spectrum of urogenital disease caused by the waterborne parasite Schistosoma haematobium. Over 90% of human schistosomiasis cases are found in sub-Saharan Africa with 3.8 million people infected with schistosomes in Zambia. Reported FGS prevalence ranges from 33-75% of those with urinary schistosomiasis in endemic areas, suggesting a potentially high FGS burden in Zambia alone. The Bilharzia and HIV (BILHIV) study evaluated home self-sampling genital collection methods for the diagnosis of FGS. Methods: Eligible participants included non-pregnant, sexually active women aged 18-31 who were previously recruited for the HPTN 071 (PopART) trial in Livingstone, Zambia. Household demographic and symptom questionnaires were administered by community workers. Participants were offered vaginal and cervical self-swabs and a urine cup. Cervicovaginal lavage (CVL) was performed in clinic by midwives. Information was collected from participants on the acceptability and feasibility of genital self-sampling. Results: From January-August 2018, 603 women were enrolled, and 87.3% (527/603) completed clinic follow up. A high proportion of participants indicated that self-collection of specimens was “easy” or “very easy” on a 5-point Likert scale. A high proportion of women would be willing to self-collect all three specimens again in future: vaginal swab 96.7% (583/603), cervical swab 96.5% (582/603), and urine 96.2% (580/603). Home-based self-sampling was preferred over provider-based sampling in the clinic due to greater privacy 58.5% (353/603), convenience 46.3% (279/603) and need for transportation 15.9% (96/603). Conclusions: Home based genital self-sampling for FGS diagnosis is highly acceptable. This scalable method may inform future efforts for community-based diagnosis of FGS.</ns4:p
Genital self-sampling compared with cervicovaginal lavage for the diagnosis of female genital schistosomiasis in Zambian women: The BILHIV study
Background: Given the potentially causal association of female genital schistosomiasis (FGS) with HIV-1 infection, improved diagnostics are urgently needed to scale-up FGS surveillance. The BILHIV (bilharzia and HIV) study assessed the performance of home-based self-collection methods (cervical and vaginal swabs) compared to cervicovaginal lavage (CVL) for the detection of Schistosoma DNA by real-time polymerase chain reaction (PCR). Methods: Between January and August 2018, a consecutive series of female participants from the Population-Cohort of the previous HIV prevention trial HPTN 071 (PopART), resident in Livingstone, Zambia were invited to take part in BILHIV if they were 18–31 years old, non-pregnant and sexually active. Genital self-collected swabs and a urine specimen were obtained and a questionnaire completed at home visits. CVL was obtained at clinic follow-up. Results: 603 women self-collected genital swabs. Of these, 527 women had CVL performed by a mid-wife during clinic follow-up. Schistosoma DNA was more frequently detected in genital self-collected specimens (24/603, 4.0%) compared to CVL (14/527, 2.7%). Overall, 5.0% (30/603) women had female genital schistosomiasis, defined as a positive PCR by any genital sampling method (cervical swab PCR, vaginal swab PCR, or CVL PCR) and 95% (573/603) did not have a positive genital PCR. The sensitivity of any positive genital self-collected swab against CVL was 57.1% (95% CI 28.9–82.3%), specificity 97.3% (95.5–98.5%). In a subset of participants with active schistosome infection, determined by detectable urine Circulating Anodic Antigen (CAA) (15.1%, 91/601), positive PCR (4.3%, 26/601), or positive microscopy (5.5%, 33/603), the sensitivity of any positive self-collected specimen against CVL was 88.9% (51.8–99.7%). Conclusions: Genital self-sampling increased the overall number of PCR-based FGS diagnoses in a field setting, compared with CVL. Home-based sampling may represent a scalable alternative method for FGS community-based diagnosis in endemic resource limited settings
Validation of the isothermal Schistosoma haematobium Recombinase Polymerase Amplification (RPA) assay, coupled with simplified sample preparation, for diagnosing female genital schistosomiasis using cervicovaginal lavage and vaginal self-swab samples
Background
Female genital schistosomiasis (FGS) is a neglected and disabling gynecological disease that can result from infection with the parasitic trematode Schistosoma haematobium. Accurate diagnosis of FGS is crucial for effective case management, surveillance and control. However, current methods for diagnosis and morbidity assessment can be inaccessible to those at need, labour intensive, costly and unreliable. Molecular techniques such as PCR can be used to reliably diagnose FGS via the detection of Schistosoma DNA using cervicovaginal lavage (CVL) samples as well as lesser-invasive vaginal self-swab (VSS) and cervical self-swab samples. PCR is, however, currently unsuited for use in most endemic settings. As such, in this study, we assessed the use of a rapid and portable S. haematobium recombinase polymerase amplification (Sh-RPA) isothermal molecular diagnostic assay, coupled with simplified sample preparation methodologies, to detect S. haematobium DNA using CVL and VSS samples provided by patients in Zambia.
Methodology/Principal findings
VSS and CVL samples were screened for FGS using a previously developed Sh-RPA assay. DNA was isolated from VSS and CVL samples using the QIAamp Mini kit (n = 603 and 527, respectively). DNA was also isolated from CVL samples using two rapid and portable DNA extraction methods: 1) the SpeedXtract Nucleic Acid Kit (n = 223) and 2) the Extracta DNA Tissue Prep Kit (n = 136). Diagnostic performance of the Sh-RPA using VSS DNA extacts (QIAamp Mini kit) as well as CVL DNA extracts (QIAamp Mini kit, SpeedXtract Nucleic Acid Kit and Extracta DNA Tissue Prep Kit) was then compared to a real-time PCR reference test.
Results suggest that optimal performance may be achieved when the Sh-RPA is used with PuVSS samples (sensitivity 93.3%; specificity 96.6%), however no comparisons between different DNA extraction methods using VSS samples could be carried out within this study. When using CVL samples, sensitivity of the Sh-RPA ranged between 71.4 and 85.7 across all three DNA extraction methods when compared to real-time PCR using CVL samples prepared using the QIAamp Mini kit. Interestingly, of these three DNA extraction methods, the rapid and portable SpeedXtract method had the greatest sensitivity and specificity (85.7% and 98.1%, respectively). Specificity of the Sh-RPA was >91% across all comparisons.
Conclusions/Significance
These results supplement previous findings, highlighting that the use of genital self-swab sampling for diagnosing FGS should be explored further whilst also demonstrating that rapid and portable DNA isolation methods can be used to detect S. haematobium DNA within clinical samples using RPA. Although further development and assessment is needed, it was concluded that the Sh-RPA, coupled with simplified sample preparation, shows excellent promise as a rapid and sensitive diagnostic tool capable of diagnosing FGS at the point-of-care in resource-poor schistosomiasis-endemic settings
Female Genital Schistosomiasis and HIV-1 Incidence in Zambian Women: A Retrospective Cohort Study.
BACKGROUND: Female genital schistosomiasis (FGS) has been associated with prevalent HIV-1. We estimated the incidence of HIV-1 infection in Zambian women with and without FGS. METHODS: Women (aged 18-31, nonpregnant, sexually active) were invited to participate in this study in January-August 2018 at the final follow-up of the HPTN 071 (PopART) Population Cohort. HIV-1-negative participants at enrollment (n = 492) were included in this analysis, with testing to confirm incident HIV-1 performed in HPTN 071 (PopART). The association of incident HIV-1 infection with FGS (Schistosoma DNA detected by polymerase chain reaction [PCR] in any genital specimen) was assessed with exact Poisson regression. RESULTS: Incident HIV-1 infections were observed in 4.1% (20/492) of participants. Women with FGS were twice as likely to seroconvert as women without FGS but with no statistical evidence for a difference (adjusted rate ratio, 2.16; 95% CI, 0.21-12.30; P = .33). Exploratory analysis suggested an association with HIV-1 acquisition among women with ≥2 positive genital PCR specimens (rate ratio, 6.02; 95% CI, 0.58-34.96; P = .13). CONCLUSIONS: Despite higher HIV seroconversion rates in women with FGS, there was no statistical evidence of association, possibly due to low power. Further longitudinal studies should investigate this association in a setting with higher schistosomiasis endemicity
Association of Female Genital Schistosomiasis With the Cervicovaginal Microbiota and Sexually Transmitted Infections in Zambian Women.
BACKGROUND: The cervicovaginal microbiota, including sexually transmitted infections (STIs), have not been well described in female genital schistosomiasis (FGS). METHODS: Women (aged 18-31, sexually active, nonpregnant) were invited to participate at the final follow-up of the HPTN 071 (PopART) Population Cohort in January-August 2018. We measured key species of the cervicovaginal microbiota (Lactobacillus crispatus, L. iners, Gardnerella vaginalis, Atopobium vaginae, and Candida) and STIs (Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Mycoplasma genitalium) using quantitative PCR (qPCR). We evaluated associations of the microbiota and STI presence and concentration with FGS (qPCR-detected Schistosoma DNA in any of 3 genital specimens). RESULTS: The presence and concentration of key cervicovaginal species did not differ between participants with (n = 30) or without FGS (n = 158). A higher proportion of participants with FGS had T. vaginalis compared with FGS-negative women (P = .08), with further analysis showing that T. vaginalis was more prevalent among women with ≥2 Schistosoma qPCR-positive genital specimens (50.0%, 8/16) than among FGS-negative women (21.5%, 34/158; P = .01). CONCLUSIONS: We found weak evidence of an association between the presence of T. vaginalis and FGS, with a stronger association in women with a higher-burden FGS infection. Additional research is needed on potential between-parasite interactions, especially regarding HIV-1 vulnerability
Cervicovaginal Immune Activation in Zambian Women With Female Genital Schistosomiasis.
HIV-1 infection disproportionately affects women in sub-Saharan Africa, where areas of high HIV-1 prevalence and Schistosoma haematobium endemicity largely overlap. Female genital schistosomiasis (FGS), an inflammatory disease caused by S. haematobium egg deposition in the genital tract, has been associated with prevalent HIV-1 infection. Elevated levels of the chemokines MIP-1α (CCL-3), MIP-1β (CCL-4), IP-10 (CXCL-10), and IL-8 (CXCL-8) in cervicovaginal lavage (CVL) have been associated with HIV-1 acquisition. We hypothesize that levels of cervicovaginal cytokines may be raised in FGS and could provide a causal mechanism for the association between FGS and HIV-1. In the cross-sectional BILHIV study, specimens were collected from 603 female participants who were aged 18-31 years, sexually active, not pregnant and participated in the HPTN 071 (PopART) HIV-1 prevention trial in Zambia. Participants self-collected urine, and vaginal and cervical swabs, while CVLs were clinically obtained. Microscopy and Schistosoma circulating anodic antigen (CAA) were performed on urine. Genital samples were examined for parasite-specific DNA by PCR. Women with FGS (n=28), defined as a positive Schistosoma PCR from any genital sample were frequency age-matched with 159 FGS negative (defined as negative Schistosoma PCR, urine CAA, urine microscopy, and colposcopy imaging) women. Participants with probable FGS (n=25) (defined as the presence of either urine CAA or microscopy in combination with one of four clinical findings suggestive of FGS on colposcope-obtained photographs) were also included, for a total sample size of 212. The concentrations of 17 soluble cytokines and chemokines were quantified by a multiplex bead-based immunoassay. There was no difference in the concentrations of cytokines or chemokines between participants with and without FGS. An exploratory analysis of those women with a higher FGS burden, defined by ≥2 genital specimens with detectable Schistosoma DNA (n=15) showed, after adjusting for potential confounders, a higher Th2 (IL-4, IL-5, and IL-13) and pro-inflammatory (IL-15) expression pattern in comparison to FGS negative women, with differences unlikely to be due to chance (p=0.037 for IL-4 and p<0.001 for IL-5 after adjusting for multiple testing). FGS may alter the female genital tract immune environment, but larger studies in areas of varying endemicity are needed to evaluate the association with HIV-1 vulnerability