65 research outputs found

    Rescue of the Epstein–Barr Virus BZLF1 Mutant, Z(S186A), Early Gene Activation Defect by the BRLF1 Gene Product

    Get PDF
    Expression of the Epstein-Barr virus (EBV) immediate-early protein, BZLF1 (Z), is sufficient to disrupt viral latency. Z transcriptionally activates the EBV early genes by binding to upstream Z-responsive elements (ZREs). Recently, a serine-to-alanine mutation of Z residue 186 (within the basic DNA binding domain) was shown to inhibit the ability of Z to induce lytic infection in latently infected cells, although the Z(S186A) mutant could still bind several known ZREs and activated an early EBV promoter (BMRF1) in transient reporter gene assays (Francis, A. L., Gradoville, L., and Miller, G. (1997). J. Virol. 71, 3054-3061). We now show that a specific deficiency in the ability to bind to ZRE elements in the immediate-early BRLF1 promoter may account for the inability of Z(S186A) to activate BRLF1 expression. Furthermore, we demonstrate that the ability of Z(S186A) to induce early BMRF1 and BHRF1 gene expression is rescued by cotransfection with a BRLF1 expression vector. However, the Z(S186A)/BRLF1 (R) combination cannot induce full lytic replication, suggesting that Z(S186A) may also be deficient in a replication-specific function. These results suggest that in the context of the intact viral genome, both Z and R expression are required for activation of early gene transcription in latently infected cells

    Rescue of the Epstein–Barr Virus BZLF1 Mutant, Z(S186A), Early Gene Activation Defect by the BRLF1 Gene Product

    Get PDF
    Expression of the Epstein-Barr virus (EBV) immediate-early protein, BZLF1 (Z), is sufficient to disrupt viral latency. Z transcriptionally activates the EBV early genes by binding to upstream Z-responsive elements (ZREs). Recently, a serine-to-alanine mutation of Z residue 186 (within the basic DNA binding domain) was shown to inhibit the ability of Z to induce lytic infection in latently infected cells, although the Z(S186A) mutant could still bind several known ZREs and activated an early EBV promoter (BMRF1) in transient reporter gene assays (Francis, A. L., Gradoville, L., and Miller, G. (1997). J. Virol. 71, 3054-3061). We now show that a specific deficiency in the ability to bind to ZRE elements in the immediate-early BRLF1 promoter may account for the inability of Z(S186A) to activate BRLF1 expression. Furthermore, we demonstrate that the ability of Z(S186A) to induce early BMRF1 and BHRF1 gene expression is rescued by cotransfection with a BRLF1 expression vector. However, the Z(S186A)/BRLF1 (R) combination cannot induce full lytic replication, suggesting that Z(S186A) may also be deficient in a replication-specific function. These results suggest that in the context of the intact viral genome, both Z and R expression are required for activation of early gene transcription in latently infected cells

    Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner

    Get PDF
    BACKGROUND: Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt’s lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. METHODS: Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. RESULTS: mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. CONCLUSIONS: Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents

    The Epstein-Barr Virus BZLF1 Protein Interacts Physically and Functionally with the Histone Acetylase CREB-Binding Protein

    Get PDF
    The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) is a key regulator of the EBV latent-to-lytic switch. Z is a transcriptional activator which induces EBV early gene expression. We demonstrate here that Z interacts with CREB-binding protein (CBP), a histone acetylase and transcriptional coactivator. This interaction requires the amino-terminal region of CBP as well as the transactivation and leucine zipper domains of Z. We show that CBP enhances Z-mediated transactivation of EBV early promoters, in reporter gene assays and in the context of the endogenous genome. We also demonstrate that Z decreases CREB transactivation function and that this inhibitory effect is reversed by overexpression of CBP. We show that Z also interacts directly with CREB. However, mutational analysis indicates that Z inhibition of CREB activity requires the direct interaction between Z and CBP but not the direct interaction between Z and CREB. We propose that Z interacts with CBP to enhance viral early gene transcription. In addition, the Z-CBP interaction may control host cellular transcription factor activity through competition for limiting amounts of cellular CBP

    PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUS(R521G), harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS

    HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention

    Get PDF
    Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy

    High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: High-sensitivity cardiac troponin assays permit use of lower thresholds for the diagnosis of myocardial infarction, but whether this improves clinical outcomes is unknown. We aimed to determine whether the introduction of a high-sensitivity cardiac troponin I (hs-cTnI) assay with a sex-specific 99th centile diagnostic threshold would reduce subsequent myocardial infarction or cardiovascular death in patients with suspected acute coronary syndrome. METHODS: In this stepped-wedge, cluster-randomised controlled trial across ten secondary or tertiary care hospitals in Scotland, we evaluated the implementation of an hs-cTnI assay in consecutive patients who had been admitted to the hospitals' emergency departments with suspected acute coronary syndrome. Patients were eligible for inclusion if they presented with suspected acute coronary syndrome and had paired cardiac troponin measurements from the standard care and trial assays. During a validation phase of 6-12 months, results from the hs-cTnI assay were concealed from the attending clinician, and a contemporary cardiac troponin I (cTnI) assay was used to guide care. Hospitals were randomly allocated to early (n=5 hospitals) or late (n=5 hospitals) implementation, in which the high-sensitivity assay and sex-specific 99th centile diagnostic threshold was introduced immediately after the 6-month validation phase or was deferred for a further 6 months. Patients reclassified by the high-sensitivity assay were defined as those with an increased hs-cTnI concentration in whom cTnI concentrations were below the diagnostic threshold on the contemporary assay. The primary outcome was subsequent myocardial infarction or death from cardiovascular causes at 1 year after initial presentation. Outcomes were compared in patients reclassified by the high-sensitivity assay before and after its implementation by use of an adjusted generalised linear mixed model. This trial is registered with ClinicalTrials.gov, number NCT01852123. FINDINGS: Between June 10, 2013, and March 3, 2016, we enrolled 48 282 consecutive patients (61 [SD 17] years, 47% women) of whom 10 360 (21%) patients had cTnI concentrations greater than those of the 99th centile of the normal range of values, who were identified by the contemporary assay or the high-sensitivity assay. The high-sensitivity assay reclassified 1771 (17%) of 10 360 patients with myocardial injury or infarction who were not identified by the contemporary assay. In those reclassified, subsequent myocardial infarction or cardiovascular death within 1 year occurred in 105 (15%) of 720 patients in the validation phase and 131 (12%) of 1051 patients in the implementation phase (adjusted odds ratio for implementation vs validation phase 1·10, 95% CI 0·75 to 1·61; p=0·620). INTERPRETATION: Use of a high-sensitivity assay prompted reclassification of 1771 (17%) of 10 360 patients with myocardial injury or infarction, but was not associated with a lower subsequent incidence of myocardial infarction or cardiovascular death at 1 year. Our findings question whether the diagnostic threshold for myocardial infarction should be based on the 99th centile derived from a normal reference population. FUNDING: The British Heart Foundation

    Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients

    Get PDF
    corecore