81 research outputs found

    SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science goals, survey design and instrumentation

    Get PDF
    The Molonglo Observatory Synthesis Telescope, operating at 843 MHz with a 5 square degree field of view, is carrying out a radio imaging survey of the sky south of declination -30 deg. This survey (the Sydney University Molonglo Sky Survey, or SUMSS) produces images with a resolution of 43" x 43" cosec(Dec.) and an rms noise level of about 1 mJy/beam. SUMSS is therefore similar in sensitivity and resolution to the northern NRAO VLA Sky Survey (NVSS; Condon et al. 1998). The survey is progressing at a rate of about 1000 square degrees per year, yielding individual and statistical data for many thousands of weak radio sources. This paper describes the main characteristics of the survey, and presents sample images from the first year of observation.Comment: 27 pages, 12 figures (figures 2, 8, 10 in jpg format); AJ, in pres

    Superconducting and Quantum-Effect Devices

    Get PDF
    Contains reports on nine research projects and a list of publications.National Science Foundation Fellowship MIP 88-58764Advanced Research Projects Agency/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Grant DMR 91-08748National Science Foundation Fellowship ProgramU.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064National Science Foundation Grant DMR 94-0202

    The Rapid ASKAP Continuum Survey I: Design and First Results

    Full text link
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of 700−1800700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with ∼15\sim 15 arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41∘+41^\circ made over a 288 MHz band centred at 887.5 MHz.Comment: 24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuu

    The Australian Square Kilometre Array Pathfinder: Performance of the Boolardy Engineering Test Array

    Get PDF
    We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope

    Discovery of HI gas in a young radio galaxy at z = 0.44 using the Australian Square Kilometre Array Pathfinder

    Get PDF
    We report the discovery of a new 21-cm H i absorption system using commissioning data from the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP). Using the 711.5–1015.5 MHz band of ASKAP we were able to conduct a blind search for the 21-cm line in a continuous redshift range between z = 0.4 and 1.0, which has, until now, remained largely unexplored. The absorption line is detected at z = 0.44 towards the GHz-peaked spectrum radio source PKS B1740−517 and demonstrates ASKAP's excellent capability for performing a future wide-field survey for H i absorption at these redshifts. Optical spectroscopy and imaging using the Gemini-South telescope indicates that the H i gas is intrinsic to the host galaxy of the radio source. The narrow [O iii] emission lines show clear double-peaked structure, indicating either large-scale outflow or rotation of the ionized gas. Archival data from the XMM–Newton satellite exhibit an absorbed X-ray spectrum that is consistent with a high column density obscuring medium around the active galactic nucleus. The H i absorption profile is complex, with four distinct components ranging in width from 5 to 300 km s−1 and fractional depths from 0.2 to 20 per cent. In addition to systemic H i gas, in a circumnuclear disc or ring structure aligned with the radio jet, we find evidence for a possible broad outflow of neutral gas moving at a radial velocity of v ~ 300 km s−1. We infer that the expanding young radio source (tage ≈ 2500 yr) is cocooned within a dense medium and may be driving circumnuclear neutral gas in an outflow of ~1 M⊙ yr−1

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447
    • …
    corecore