679 research outputs found
Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas
We present time-resolved spectroscopic measurements of Rydberg-Rydberg
interactions in an ultracold gas, revealing the pair dynamics induced by
long-range van der Waals interactions between the atoms. By detuning the
excitation laser, a specific pair distribution is prepared. Penning ionization
on a microsecond timescale serves as a probe for the pair dynamics under the
influence of the attractive long-range forces. Comparison with a Monte Carlo
model not only explains all spectroscopic features but also gives quantitative
information about the interaction potentials. The results imply that the
interaction-induced ionization rate can be influenced by the excitation laser.
Surprisingly, interaction-induced ionization is also observed for Rydberg
states with purely repulsive interactions
Rabi oscillations between ground and Rydberg states and van der Waals blockade in a mesoscopic frozen Rydberg gas
We present a detailed analysis of our recent observation of synchronous Rabi
oscillations between the electronic ground state and Rydberg states in a
mesoscopic ensemble containing roughly 100 ultracold atoms [M. Reetz-Lamour
\textit{et al.}, submitted, arXiv:0711.4321]. The mesoscopic cloud is selected
out of a sample of laser-cooled Rb atoms by optical pumping. The atoms are
coupled to a Rydberg state with principal quantum number around 30 by a
two-photon scheme employing flat-top laser beams. The influence of residual
spatial intensity fluctuations as well as sources of decoherence such as
redistribution to other states, radiative lifetime, and laser bandwidth are
analysed. The results open up new possibilities for the investigation of
coherent many-body phenomena in dipolar Rydberg gases. As an example we
demonstrate the van der Waals blockade, a variant of the dipole blockade, for a
mesoscopic atom sample
Adiabatic Formation of Rydberg Crystals with Chirped Laser Pulses
Ultracold atomic gases have been used extensively in recent years to realize
textbook examples of condensed matter phenomena. Recently, phase transitions to
ordered structures have been predicted for gases of highly excited, 'frozen'
Rydberg atoms. Such Rydberg crystals are a model for dilute metallic solids
with tunable lattice parameters, and provide access to a wide variety of
fundamental phenomena. We investigate theoretically how such structures can be
created in four distinct cold atomic systems, by using tailored
laser-excitation in the presence of strong Rydberg-Rydberg interactions. We
study in detail the experimental requirements and limitations for these
systems, and characterize the basic properties of small crystalline Rydberg
structures in one, two and three dimensions.Comment: 23 pages, 10 figures, MPIPKS-ITAMP Tandem Workshop, Cold Rydberg
Gases and Ultracold Plasmas (CRYP10), Sept. 6-17, 201
Autoionization of an ultracold Rydberg gas through resonant dipole coupling
We investigate a possible mechanism for the autoionization of ultracold
Rydberg gases, based on the resonant coupling of Rydberg pair states to the
ionization continuum. Unlike an atomic collision where the wave functions begin
to overlap, the mechanism considered here involves only the long-range dipole
interaction and is in principle possible in a static system. It is related to
the process of intermolecular Coulombic decay (ICD). In addition, we include
the interaction-induced motion of the atoms and the effect of multi-particle
systems in this work. We find that the probability for this ionization
mechanism can be increased in many-particle systems featuring attractive or
repulsive van der Waals interactions. However, the rates for ionization through
resonant dipole coupling are very low. It is thus unlikely that this process
contributes to the autoionization of Rydberg gases in the form presented here,
but it may still act as a trigger for secondary ionization processes. As our
picture involves only binary interactions, it remains to be investigated if
collective effects of an ensemble of atoms can significantly influence the
ionization probability. Nevertheless our calculations may serve as a starting
point for the investigation of more complex systems, such as the coupling of
many pair states proposed in [Tanner et al., PRL 100, 043002 (2008)]
Isolated and Combined Effects of Electroacupuncture and Meditation in Reducing Experimentally Induced Ischemic Pain: A Pilot Study
Acupuncture and meditation are promising treatment options for clinical pain. However, studies investigating the effects of these methods on experimental pain conditions are equivocal. Here, the effects of electroacupuncture (EA) and meditation on the submaximum effort tourniquet technique (SETT), a well-established, opiate-sensitive pain paradigm in experimental placebo research were studied. Ten experienced meditators (6 male subjects) and 13 nonmeditators (6 male subjects) were subjected to SETT (250 mmHG) on one baseline (SETT only) and two treatment days (additional EA contralaterally to the SETT, either at the leg on ST36 and LV3 or at the arm on LI4 and LI10 in randomized order). Numeric Rating Scale (NRS) ratings (scale 0–10) were recorded every 3 min. During baseline, meditation induced significantly greater pain tolerance in meditators when compared with the control group. Both the EA conditions significantly increased pain tolerance and reduced pain ratings in controls. Furthermore, EA diminished the group difference in pain sensitivity, indicating that meditators had no additional benefit from acupuncture. The data suggest that EA as a presumable bottom-up process may be as effective as meditation in controlling experimental SETT pain. However, no combined effect of both the techniques could be observed
Low-loss multilayer compatible a-Si:H optical thin films for photonic applications
This paper reports about hydrogenated amorphous silicon which can be employed as low-loss optical material for small footprint and cost-effective photonic integrated circuits. Basic waveguides, photonic wire based couplers, Mach-Zehnder interferometers, ring resonators and Mach-Zehnder assisted ring resonators were designed, fabricated, and optically characterised. The propagation loss of rib and photonic wire waveguides were determined to be 2 dB/cm and 5.3 dB/cm, respectively. The 90° bending losses of 5 µm curved photonic wires were determined to be 0.025 dB/90°. Three-dimensional tapers, which were fabricated without additional etching steps and were deposited on top of the fabricated photonic wires showed a net coupling loss of 4 dB/port. Multimode 3 dB-splitters were systematically investigated resulting in 49-51% splitting ratios. Mach-Zehnder interferometers that were realised with these splitters showed interference fringe depths of up to 25 dB for both polarisations. Compact ring resonators with 10 µm radius implemented as notch filters and in Mach-Zehnder coupled configurations provided extinction ratios of ≥20 dB and Q-factors up to 7500
Coherent Population Trapping with Controlled Interparticle Interactions
We investigate Coherent Population Trapping in a strongly interacting
ultracold Rydberg gas. Despite the strong van der Waals interactions and
interparticle correlations, we observe the persistence of a resonance with
subnatural linewidth at the single-particle resonance frequency as we tune the
interaction strength. This narrow resonance cannot be understood within a
meanfield description of the strong Rydberg--Rydberg interactions. Instead, a
many-body density matrix approach, accounting for the dynamics of interparticle
correlations, is shown to reproduce the observed spectral features
Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17<Z <25
The results of measurements of the production of neutron-rich nuclei by the
fragmentation of a 76-Ge beam are presented. The cross sections were measured
for a large range of nuclei including fifteen new isotopes that are the most
neutron-rich nuclides of the elements chlorine to manganese (50-Cl, 53-Ar,
55,56-K, 57,58-Ca, 59,60,61-Sc, 62,63-Ti, 65,66-V, 68-Cr, 70-Mn). The enhanced
cross sections of several new nuclei relative to a simple thermal evaporation
framework, previously shown to describe similar production cross sections,
indicates that nuclei in the region around 62-Ti might be more stable than
predicted by current mass models and could be an indication of a new island of
inversion similar to that centered on 31-Na.Comment: 4 pages, 3 figures, to be published in Physical Review Letters, 200
Recommended from our members
Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994–1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy covariance (EC) measurements of whole-ecosystem CO2exchange and evapotranspiration, to chamber measurements of nighttime moss-surface CO2release, and to ground-based estimates of annual gross primary production, net primary production, net ecosystem production (NEP), plant respiration, and decomposition. Model-model differences were apparent for all variables. Model-measurement agreement was good in some cases but poor in others. Modeled annual NEP ranged from −11 g C m−2 (weak CO2source) to 85 g C m−2 (moderate CO2 sink). The models generally predicted greater annual CO2sink activity than measured by EC, a discrepancy consistent with the fact that model parameterizations represented the more productive fraction of the EC tower “footprint.” At hourly to monthly timescales, predictions bracketed EC measurements so median predictions were similar to measurements, but there were quantitatively important model-measurement discrepancies found for all models at subannual timescales. For these models and input data, hourly time steps (and greater complexity) compared to daily time steps tended to improve model-measurement agreement for daily scale CO2 exchange and evapotranspiration (as judged by root-mean-squared error). Model time step and complexity played only small roles in monthly to annual predictions
- …