346 research outputs found

    Experimental fully contextual correlations

    Get PDF
    Quantum correlations are contextual yet, in general, nothing prevents the existence of even more contextual correlations. We identify and test a noncontextuality inequality in which the quantum violation cannot be improved by any hypothetical postquantum theory, and use it to experimentally obtain correlations in which the fraction of noncontextual correlations is less than 0.06. Our correlations are experimentally generated from the results of sequential compatible tests on a four-state quantum system encoded in the polarization and path of a single photon.Comment: REVTeX4, 6 pages, 3 figure

    Pentagrams and paradoxes

    Full text link
    Klyachko and coworkers consider an orthogonality graph in the form of a pentagram, and in this way derive a Kochen-Specker inequality for spin 1 systems. In some low-dimensional situations Hilbert spaces are naturally organised, by a magical choice of basis, into SO(N) orbits. Combining these ideas some very elegant results emerge. We give a careful discussion of the pentagram operator, and then show how the pentagram underlies a number of other quantum "paradoxes", such as that of Hardy.Comment: 14 pages, 4 figure

    Intravitreal bevacizumab (Avastin) for choroidal metastasis secondary to breast carcinoma: short-term follow-up

    Get PDF
    Uveal metastases are the most common intraocular malignancy. The most common primary sites of cancer are from the breast (47%) and lung (21%).1 The treatment for choroidal metastasis depends on many factors including location, multiplicity, and activity of each tumour.1 Bevacizumab (Avastins) is a full-length humanized murine monoclonal antibody against the VEGF molecule, and inhibits angiogenesis and tumour growth.2 In this report, we describe the effect of a single intravitreal injection of bevacizumab (4 mg) in a patient with choroidal metastasis secondary to breast cancerMedicin

    How much contextuality?

    Full text link
    The amount of contextuality is quantified in terms of the probability of the necessary violations of noncontextual assignments to counterfactual elements of physical reality.Comment: 5 pages, 3 figure

    State-independent quantum violation of noncontextuality in four dimensional space using five observables and two settings

    Full text link
    Recently, a striking experimental demonstration [G. Kirchmair \emph{et al.}, Nature, \textbf{460}, 494(2009)] of the state-independent quantum mechanical violation of non-contextual realist models has been reported for any two-qubit state using suitable choices of \emph{nine} product observables and \emph{six} different measurement setups. In this report, a considerable simplification of such a demonstration is achieved by formulating a scheme that requires only \emph{five} product observables and \emph{two} different measurement setups. It is also pointed out that the relevant empirical data already available in the experiment by Kirchmair \emph{et al.} corroborate the violation of the NCR models in accordance with our proof

    Testing sequential quantum measurements: how can maximal knowledge be extracted?

    Get PDF
    The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we consider two different regimes of measurement, demonstrating that, by exploiting an adaptive strategy, an optimal trade-off between the two quantities can be found, as observed in a single measurement process. Such experimental result, achieved for two sequential measurements, can be extended to N measurement processes.Comment: 5 pages, 3 figure

    Parity proofs of the Bell-Kochen-Specker theorem based on the 600-cell

    Full text link
    The set of 60 real rays in four dimensions derived from the vertices of a 600-cell is shown to possess numerous subsets of rays and bases that provide basis-critical parity proofs of the Bell-Kochen-Specker (BKS) theorem (a basis-critical proof is one that fails if even a single basis is deleted from it). The proofs vary considerably in size, with the smallest having 26 rays and 13 bases and the largest 60 rays and 41 bases. There are at least 90 basic types of proofs, with each coming in a number of geometrically distinct varieties. The replicas of all the proofs under the symmetries of the 600-cell yield a total of almost a hundred million parity proofs of the BKS theorem. The proofs are all very transparent and take no more than simple counting to verify. A few of the proofs are exhibited, both in tabular form as well as in the form of MMP hypergraphs that assist in their visualization. A survey of the proofs is given, simple procedures for generating some of them are described and their applications are discussed. It is shown that all four-dimensional parity proofs of the BKS theorem can be turned into experimental disproofs of noncontextuality.Comment: 19 pages, 11 tables, 3 figures. Email address of first author has been corrected. Ref.[5] has been corrected, as has an error in Fig.3. Formatting error in Sec.4 has been corrected and the placement of tables and figures has been improved. A new paragraph has been added to Sec.4 and another new paragraph to the end of the Appendi
    • …
    corecore