307 research outputs found

    Experimental fully contextual correlations

    Get PDF
    Quantum correlations are contextual yet, in general, nothing prevents the existence of even more contextual correlations. We identify and test a noncontextuality inequality in which the quantum violation cannot be improved by any hypothetical postquantum theory, and use it to experimentally obtain correlations in which the fraction of noncontextual correlations is less than 0.06. Our correlations are experimentally generated from the results of sequential compatible tests on a four-state quantum system encoded in the polarization and path of a single photon.Comment: REVTeX4, 6 pages, 3 figure

    Intravitreal bevacizumab (Avastin) for choroidal metastasis secondary to breast carcinoma: short-term follow-up

    Get PDF
    Uveal metastases are the most common intraocular malignancy. The most common primary sites of cancer are from the breast (47%) and lung (21%).1 The treatment for choroidal metastasis depends on many factors including location, multiplicity, and activity of each tumour.1 Bevacizumab (Avastins) is a full-length humanized murine monoclonal antibody against the VEGF molecule, and inhibits angiogenesis and tumour growth.2 In this report, we describe the effect of a single intravitreal injection of bevacizumab (4 mg) in a patient with choroidal metastasis secondary to breast cancerMedicin

    Pentagrams and paradoxes

    Full text link
    Klyachko and coworkers consider an orthogonality graph in the form of a pentagram, and in this way derive a Kochen-Specker inequality for spin 1 systems. In some low-dimensional situations Hilbert spaces are naturally organised, by a magical choice of basis, into SO(N) orbits. Combining these ideas some very elegant results emerge. We give a careful discussion of the pentagram operator, and then show how the pentagram underlies a number of other quantum "paradoxes", such as that of Hardy.Comment: 14 pages, 4 figure

    How much contextuality?

    Full text link
    The amount of contextuality is quantified in terms of the probability of the necessary violations of noncontextual assignments to counterfactual elements of physical reality.Comment: 5 pages, 3 figure

    Parity proofs of the Bell-Kochen-Specker theorem based on the 600-cell

    Full text link
    The set of 60 real rays in four dimensions derived from the vertices of a 600-cell is shown to possess numerous subsets of rays and bases that provide basis-critical parity proofs of the Bell-Kochen-Specker (BKS) theorem (a basis-critical proof is one that fails if even a single basis is deleted from it). The proofs vary considerably in size, with the smallest having 26 rays and 13 bases and the largest 60 rays and 41 bases. There are at least 90 basic types of proofs, with each coming in a number of geometrically distinct varieties. The replicas of all the proofs under the symmetries of the 600-cell yield a total of almost a hundred million parity proofs of the BKS theorem. The proofs are all very transparent and take no more than simple counting to verify. A few of the proofs are exhibited, both in tabular form as well as in the form of MMP hypergraphs that assist in their visualization. A survey of the proofs is given, simple procedures for generating some of them are described and their applications are discussed. It is shown that all four-dimensional parity proofs of the BKS theorem can be turned into experimental disproofs of noncontextuality.Comment: 19 pages, 11 tables, 3 figures. Email address of first author has been corrected. Ref.[5] has been corrected, as has an error in Fig.3. Formatting error in Sec.4 has been corrected and the placement of tables and figures has been improved. A new paragraph has been added to Sec.4 and another new paragraph to the end of the Appendi

    Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres

    Full text link
    A diagrammatic representation is given of the 24 rays of Peres that makes it easy to pick out all the 512 parity proofs of the Kochen-Specker theorem contained in them. The origin of this representation in the four-dimensional geometry of the rays is pointed out.Comment: 14 pages, 6 figures and 3 tables. Three references have been added. Minor typos have been correcte

    Isomorphism between the Peres and Penrose proofs of the BKS theorem in three dimensions

    Full text link
    It is shown that the 33 complex rays in three dimensions used by Penrose to prove the Bell-Kochen-Specker theorem have the same orthogonality relations as the 33 real rays of Peres, and therefore provide an isomorphic proof of the theorem. It is further shown that the Peres and Penrose rays are just two members of a continuous three-parameter family of unitarily inequivalent rays that prove the theorem.Comment: 7 pages, 2 Tables. A concluding para and 9 new references have been added to the second versio
    • …
    corecore