24 research outputs found

    Design and evaluation of taste masked chewable dispersible tablet of lamotrigine by melt granulation

    Get PDF
    Lamotrigine, an antiepileptic drug (AED) of the phenyltriazine class, is chemically unrelated to existing antiepileptic drugs. Lamotrigine is also used in the treatment of depression and bipolar disorder. But it is a bitter drug and slightly soluble in water. Thus, in the work under taken, an attempt was made to mask the taste and to formulate into a chewable dispersible tablet by complexation with Precirol ATO-05, which also acts as taste masking agent. Since, these tablets can be swallowed in the form of dispersion; it is suitable dosage form for paediatric and geriatric patients. Drug-Precirol ATO-05 was prepared in drug to Precirol ATO-05 ratio of 1:2, 1:1.5, 1:1, 1:0.5. The prepared tablets were evaluated for general appearance, content uniformity, hardness, friability, taste evaluation, mouth feel, in vitro disintegration time, and in vitro dissolution studies. Tablets with Precirol ATO-05 have shown good disintegrating features, also, the dispersion not showing any bitter taste, indicate the capability of Precirol ATO-05 used, both as taste masking agents. Almost more than 90 percent of drug was released from the formulation within 1 h. Further formulations were subjected to stability testing for 3 months at temperatures 25±5ÂșC/60±5%RH; 30±5ÂșC/65±5%RH and 40±5ÂșC/75±5%RH. Tablets have shown no appreciable changes with respect to taste, disintegration, and dissolution profiles.Keywords: Lamotrigine; Melt granulation; Precirol; Taste masking; Chewable dispersible tablets

    Protein kinase STK25 is a regulator of hepatic lipid partitioning and whole body metabolism

    Get PDF
    In past decade, type 2 diabetes (T2D) and associated metabolic complications have become a major global threat for human health with epidemic increase in incidence. Currently available treatments for T2D have several limitations and side effects making it difficult safely reach adequate metabolic control. Therefore, it is important to identify novel therapeutic targets for metabolic regulation, which could complement current treatments for T2D. T2D is closely associated with ectopic lipid deposition. Recent evidence suggests that hepatic lipid deposition is not merely a consequence of the metabolic syndrome but rather that non-alcoholic fatty liver disease (NAFLD), and progression to non-alcoholic steatohepatitis (NASH), exacerbate hepatic and systemic insulin resistance and actively contribute to the pathogenesis of the metabolic syndrome. However, no pharmacological treatment is approved for NAFLD/NASH, to date. Serine/threonine protein kinase 25 (STK25) is broadly expressed in mouse, rat and human tissues. Previous studies by our research group in the rat myoblast cell line L6 by small interfering RNA (siRNA) have shown that STK25 is involved in regulation of glucose uptake and lipid oxidation. Studies presented in this thesis work demonstrate that the transgenic mice overexpressing STK25 challenged with a high-fat diet display a shift in the metabolic balance in peripheral tissues from lipid oxidation to lipid storage, resulting in a systemic insulin resistance. In contrast, Stk25 knockout mice show better-preserved systemic insulin sensitivity via an opposite shift in the metabolic balance in peripheral tissues from lipid storage to lipid utilization. We found that STK25 coats lipid droplets in mouse liver and human hepatocytes. Our studies performed in mouse liver, and in hepatocytes from both mouse and human, suggest that STK25 regulates hepatic lipid partitioning by controlling ÎČ-oxidation and very low-density lipoprotein (VLDL)-triacylglycerol (TAG) secretion. Increased activity of STK25 reduces liver lipolytic capacity, which in turn results in lower availability of lipids for hepatic ÎČ-oxidation and VLDL-TAG secretion, leading to enhanced lipid storage. Upon inactivation of STK25 reciprocal increase in liver lipolytic capacity, ÎČ-oxidation and VLDL-TAG secretion was seen, which likely account for the reduced hepatic lipid storage. We also found a statistically significant positive correlation between STK25 mRNA expression in human liver biopsies and hepatic fat content. Taken together, our studies suggest that inhibition of STK25 enables the reduction of ectopic lipid deposition and improves insulin sensitivity and glucose utilization in peripheral tissues. Our studies highlight STK25 as a potential drug target for prevention and/or treatment of T2D, NAFLD and NASH

    Stellate cells aid growth‐permissive metabolic reprogramming and promote gemcitabine chemoresistance in pancreatic cancer

    No full text
    Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC

    Pancreatic Cancer Chemoresistance to Gemcitabine

    No full text
    Pancreatic ductal adenocarcinoma (PDAC), commonly referred to as pancreatic cancer, ranks among the leading causes of cancer-related deaths in the Western world due to disease presentation at an advanced stage, early metastasis and generally a very limited response to chemotherapy or radiotherapy. Gemcitabine remains a cornerstone of PDAC treatment in all stages of the disease despite suboptimal clinical effects primarily caused by molecular mechanisms limiting its cellular uptake and activation and overall efficacy, as well as the development of chemoresistance within weeks of treatment initiation. To circumvent gemcitabine resistance in PDAC, several novel therapeutic approaches, including chemical modifications of the gemcitabine molecule generating numerous new prodrugs, as well as new entrapment designs of gemcitabine in colloidal systems such as nanoparticles and liposomes, are currently being investigated. Many of these approaches are reported to be more efficient than the parent gemcitabine molecule when tested in cellular systems and in vivo in murine tumor model systems; however, although promising, their translation to clinical use is still in a very early phase. This review discusses gemcitabine metabolism, activation and chemoresistance entities in the gemcitabine cytotoxicity pathway and provides an overview of approaches to override chemoresistance in pancreatic cancer

    Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells

    No full text
    Background Gemcitabine remains a cornerstone in chemotherapy of pancreatic ductal adenocarcinoma (PDAC) despite suboptimal clinical effects that are partly due to the development of chemoresistance. Pancreatic stellate cells (PSCs) of the tumor stroma are known to interact with pancreatic cancer cells (PCCs) and influence the progression of PDAC through a complex network of signaling molecules that involve extracellular matrix (ECM) proteins. To understand tumor-stroma interactions regulating chemosensitivity, the role of PSC-secreted fibronectin (FN) in the development of gemcitabine resistance in PDAC was examined. Methods PSC cultures obtained from ten different human PDAC tumors were co-cultured with PCC lines (AsPC-1, BxPC-3, Capan-2, HPAF-II, MIA PaCa-2, PANC-1 and SW-1990) either directly, or indirectly via incubation with PSC-conditioned medium (PSC-CM). Gemcitabine dose response cytotoxicity was determined using MTT based cell viability assays. Protein expression was assessed by western blotting and immunofluorescence. PSC-CM secretome analysis was performed by proteomics-based LC-MS/MS, and FN content in PSC-CM was determined with ELISA. Radiolabeled gemcitabine was used to determine the capacity of PCCs to uptake the drug. Results In both direct and indirect co-culture, PSCs induced varying degrees of resistance to the cytotoxic effects of gemcitabine among all cancer cell lines examined. A variable degree of increased phosphorylation of ERK1/2 was observed across all PCC lines upon incubation with PSC-CM, while activation of AKT was not detected. Secretome analysis of PSC-CM identified 796 different proteins, including several ECM-related proteins such as FN and collagens. Soluble FN content in PSC-CM was detected in the range 175–350 ng/ml. Neither FN nor PSC-CM showed any effect on PCC uptake capacity of gemcitabine. PCCs grown on FN-coated surface displayed higher resistance to gemcitabine compared to cells grown on non-coated surface. Furthermore, a FN inhibitor, synthetic Arg-Gly-Asp-Ser (RGDS) peptide significantly inhibited PSC-CM-induced chemoresistance in PCCs via downregulation of ERK1/2 phosphorylation. Conclusions The findings of this study suggest that FN secreted by PSCs in the ECM plays a key role in the development of resistance to gemcitabine via activation of ERK1/2. FN-blocking agents added to gemcitabine-based chemotherapy might counteract chemoresistance in PDAC and provide better clinical outcomes

    Neoadjuvant chemotherapy is associated with an altered metabolic profile and increased cancer stemness in patients with pancreatic ductal adenocarcinoma

    No full text
    The modest clinical benefits of neoadjuvant chemotherapy (NAT) in pancreatic ductal adenocarcinoma (PDAC) are associated with a lack of robust data on treatment‐induced changes in the tumor. To this end, comparative proteomic profiling of tumor tissue samples from treatment‐naïve (TN, n = 20) and NAT‐treated (n = 22) PDACs was performed. Differentially expressed proteins were identified and correlation with overall survival (OS) was performed. Tumors were also examined for histopathological changes and expression of cancer stem cell (CSC) markers. Serum from 33 matched patients was analyzed for metabolic markers. Cytotoxicity, proliferation, and expression of CSC markers were assessed in chemoresistant Panc‐1 and Mia PaCa‐2 cells. Of the 2265 proteins identified, 227 and 144 proteins showed significantly altered expression and differential phosphorylation, respectively, in NAT compared with TN samples. The majority of these were metabolism‐related proteins, and 14 of these correlated moderately with OS. NAT‐treated tumors and chemoresistant cancer cells showed increased expression of CSC markers. Serum ALDH1A1 was higher in NAT compared with TN. Differentially phosphorylated proteins were mainly involved in cytoskeleton organization, cell locomotion, motility, and migration, and 17 of these showed a strong positive correlation with OS. This study provides evidence of the effects of NAT on PDAC metabolism at both the tumor and the systemic levels. NAT‐treated tumors showed significantly lower expression of metabolic proteins, and patients who underwent NAT showed reduced serum lactate and high‐density lipoprotein‐cholesterol. Lastly, cancer cells that survived cytotoxic treatment expressed higher CSC markers, both in vivo and in vitro

    Commonly Used Pancreatic Stellate Cell Cultures Differ Phenotypically and in Their Interactions with Pancreatic Cancer Cells

    Get PDF
    Activated pancreatic stellate cells (PSCs) play a central role in the tumor stroma of pancreatic ductal adenocarcinoma (PDAC). Given the limited availability of patient-derived PSCs from PDAC, immortalized PSC cell lines of murine and human origin have been established; however, it is not elucidated whether differences in species, organ disease status, donor age, and immortalization alter the PSC phenotype and behavior compared to that of patient-derived primary PSC cultures. Therefore, a panel of commonly used PSC cultures was examined for important phenotypical and functional features: three primary cultures from human PDAC, one primary from normal human pancreas, and three immortalized (one from human, two from murine pancreas). Growth rate was considerably lower in primary PSCs from human PDAC. Basal collagen synthesis varied between the PSC cultures, and TGF-ÎČ stimulation increased collagen synthesis only in non-immortalized cultures. Differences in secretome composition were observed along with a divergence in the DNA synthesis, migration, and response to gemcitabine of PDAC cell lines that were grown in conditioned medium from the various PSC cultures. The findings reveal considerable differences in features and functions that are key to PSCs and in the interactions with PDAC. These observations may be relevant to researchers when selecting the most appropriate PSC culture for their experiments

    Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence

    No full text
    Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors

    Commonly Used Pancreatic Stellate Cell Cultures Differ Phenotypically and in Their Interactions with Pancreatic Cancer Cells

    No full text
    Activated pancreatic stellate cells (PSCs) play a central role in the tumor stroma of pancreatic ductal adenocarcinoma (PDAC). Given the limited availability of patient-derived PSCs from PDAC, immortalized PSC cell lines of murine and human origin have been established; however, it is not elucidated whether differences in species, organ disease status, donor age, and immortalization alter the PSC phenotype and behavior compared to that of patient-derived primary PSC cultures. Therefore, a panel of commonly used PSC cultures was examined for important phenotypical and functional features: three primary cultures from human PDAC, one primary from normal human pancreas, and three immortalized (one from human, two from murine pancreas). Growth rate was considerably lower in primary PSCs from human PDAC. Basal collagen synthesis varied between the PSC cultures, and TGF-β stimulation increased collagen synthesis only in non-immortalized cultures. Differences in secretome composition were observed along with a divergence in the DNA synthesis, migration, and response to gemcitabine of PDAC cell lines that were grown in conditioned medium from the various PSC cultures. The findings reveal considerable differences in features and functions that are key to PSCs and in the interactions with PDAC. These observations may be relevant to researchers when selecting the most appropriate PSC culture for their experiments
    corecore