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Abstract: Activated pancreatic stellate cells (PSCs) play a central role in the tumor stroma of pancreatic
ductal adenocarcinoma (PDAC). Given the limited availability of patient-derived PSCs from PDAC,
immortalized PSC cell lines of murine and human origin have been established; however, it is not
elucidated whether differences in species, organ disease status, donor age, and immortalization
alter the PSC phenotype and behavior compared to that of patient-derived primary PSC cultures.
Therefore, a panel of commonly used PSC cultures was examined for important phenotypical and
functional features: three primary cultures from human PDAC, one primary from normal human
pancreas, and three immortalized (one from human, two from murine pancreas). Growth rate was
considerably lower in primary PSCs from human PDAC. Basal collagen synthesis varied between
the PSC cultures, and TGF-β stimulation increased collagen synthesis only in non-immortalized
cultures. Differences in secretome composition were observed along with a divergence in the DNA
synthesis, migration, and response to gemcitabine of PDAC cell lines that were grown in conditioned
medium from the various PSC cultures. The findings reveal considerable differences in features and
functions that are key to PSCs and in the interactions with PDAC. These observations may be relevant
to researchers when selecting the most appropriate PSC culture for their experiments.

Keywords: pancreatic stellate cells; pancreatic cancer; tumor-stroma interaction; TGF-β

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with an overall 5-year survival of
less than 7% [1]. Because survival has only minimally improved in the past decades, PDAC is predicted
to become the second leading cause for cancer-related mortality by 2030 [2,3]. The two main reasons
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for poor patient outcome are late diagnosis and pronounced resistance to most conventional treatment
options [4]. The tumor stroma, which is exceedingly prominent in PDAC, plays an important role in
treatment resistance [5], although the exact mechanisms by which it contributes to drug resistance are
currently poorly understood. Whereas in the past, the stroma was mainly considered a mere mechanical
barrier to drug delivery [6], it is now increasingly attributed a more active, multifaceted role, in which
pancreatic stellate cells (PSCs) take center stage by exerting effects on the cancer cells through paracrine
mechanisms as well as the production of various components of the extracellular matrix (ECM) [7–10].
Approaches to target the stroma therapeutically have currently been undertaken with conflicting
results. While inhibition of the hedgehog pathway led to enhanced efficacy of gemcitabine in a mouse
model [11], a clinical study with the same approach failed to show any benefit in patient outcome [12].
Moreover, two recent mouse studies demonstrated that stromal depletion either by inhibition of the
hedgehog pathway or genetic depletion of myofibroblasts resulted in increased tumor aggressiveness
and reduced survival [13,14].

From these apparently inconsistent results, the concept of dual, both tumor-promoting and
tumor-restraining, effects of the stroma emerged [15], highlighting the need for more in-depth
preclinical research in order to exploit the stroma therapeutically in a more predictable manner.
Given the central role of the PSCs in the production, maintenance, and remodeling of the ECM as well
as in the complex, reciprocal interactions with the cancer cell population, multiple PSC culture model
systems have been developed [16]. Whereas initially, murine PSCs were mainly employed for in vitro
experiments, the body of literature on studies with human PSCs has steadily grown during the past
10 years [17]. However, as the availability of primary patient-derived PSCs from PDAC is limited,
isolation is time consuming, culturing hampered by considerable variability between individual
preparations, and passaging limited due to senescence, several immortalized PSC cell lines of both
human and murine origin have been established, usually by the transfection with SV40 large T antigen
and human telomerase (hTERT) [18–20]. Only four years ago, a PSC culture from normal human
pancreas (HPaSteC) has become commercially available [21].

Despite obvious differences in species, origin from normal or diseased pancreas, and the primary
or immortalized nature of the PSC cultures, results from studies using various PSC cultures have
been published and discussed without due consideration of the potential impact of these differences
on the study findings [22]. Indeed, a systematic characterization of the various PSC cultures that
would underpin the assumed comparability of data is lacking. The aim of this study was therefore
to characterize a panel of different PSC cultures that are commonly used to study human PDAC,
including primary PSCs –PDAC-derived PSCs and commercially available PSCs from normal human
pancreas (HPaSteC), as well as immortalized PSCs that were isolated from human pancreas with
chronic pancreatitis (RLT-PSC) [18] and immortalized PSCs of murine origin (i-mPSC clone 2 and
clone 3) [20]. Key phenotypical and functional PSC features such as morphology, protein expression,
proliferation rate, collagen synthesis, response to transforming growth factor-beta (TGF-β), secretome
composition, and the effect of soluble factors produced by PSCs on DNA synthesis, migration activity,
and gemcitabine sensitivity of pancreatic cancer cells were analyzed. The findings of the study reveal
marked differences for some of the above features, which may help researchers in selecting the most
appropriate PSC culture for their experiments.

2. Materials and Methods

2.1. Patients

The study protocol and patient consent documents were approved by the Regional Committee
for Medical and Health Research Ethics (REC South East, project number 2015/738) and followed the
Helsinki Declaration. Written informed consent was obtained from the three adult patients, whose
tumor tissue was used for the study.
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2.2. Reagents

Reagents were purchased from the following sources: BODIPY™ 493/503, Dulbecco’s modified
Eagle’s medium (DMEM) containing 4.5 g/L glucose, DMEM F-12 containing GlutaMAX-I,
penicillin-streptomycin (Pen-Strep), amphotericin B, trypsin/EDTA, fetal bovine serum (FBS), and
PierceTM BCA protein assay kit from Thermo Fisher Scientific (Waltham, MA, USA); bovine serum
albumin (BSA), dimethyl sulfoxide (DMSO), gemcitabine hydrochloride, 3-(4,5-Dimethylthiazol-2-yl)-
2,5-Diphenyltetrazolium Bromide (MTT), phosphate buffered saline (PBS), and senescence cells
histochemical staining kit from Sigma–Aldrich (St. Louis, MO, USA); TGF-β from R&D Systems
Europe (Abingdon, UK); human anti-alpha smooth muscle actin (α-SMA; BS66) from Nordic Biosite
AB (Taby, Sweden); anti-glial fibrillary acidic protein (GFAP) (GA5), anti-epithelial cell adhesion
molecule (EpCAM; VU1D9), anti-vimentin (D21H3), anti-GAPDH and Smad2/3 antibody sampler kit
from Cell Signaling Technology (Beverly, MA, USA); anti- TGF-β receptor I (TGF-β RI) and anti-TGF-β
receptor II (TGF-β RII) from Abcam (Cambridge, UK); secondary HRP-conjugated antibodies goat
anti-mouse and goat anti-rabbit IgG from Bio-Rad Laboratories (Hercules, CA, USA); secondary Alexa
Fluor-conjugated antibodies (anti-mouse and anti-rabbit) and DAPI from Jackson ImmunoResearch
(West Grove, PA, USA).

2.3. Isolation and Culture

Primary human pancreatic stellate cells (hPSCs) were obtained from tumor tissue sampled from
surgical resection specimens with PDAC. Human pancreatic stellate cells were isolated and cultured
by the outgrowth method as previously described [23,24]. Cultures were established and propagated
from three different patients (designated hPSC-1, hPSC-2, and hPSC-3). The purity of the hPSCs was
assessed by morphology and demonstration of α-SMA and vimentin expression. All experiments were
performed using cell cultures between passage 3 and 8. The PDAC cell lines BxPC-3 and MIA PaCa-2
were purchased from ATCC (Manassas, VA, USA). The hPSC and PDAC cell lines were cultured and
maintained in DMEM supplemented with 10% FBS, 1% Pen-Strep, and 1% amphotericin B. HPaSteC
(Human Pancreatic Stellate Cells, fibroblastic cells isolated from pancreas of a 22-week old, fetal,
non-diseased, male donor) were purchased from ScienCell Research Laboratories (San Diego, CA,
USA), cultured, and maintained according to the supplier’s protocol.

Immortalized PSC cell lines from human RLT-PSC (referred to as i-hPSC) [18] and from mice
(referred to as i-mPSC C2 and i-mPSC C3) [20] were kindly provided by Prof. J-M. Löhr, Karolinska
Institute, Sweden. The immortalized cells were cultured and maintained in DMEM/F-12 supplemented
with 10% FBS, 1% Pen-Strep and 1% amphotericin B.

2.4. Morphology, H&E Staining, and Size Measurement

Cells were cultured in 96-well plates, fixed in 4% formaldehyde, and stained with hematoxylin
and eosin (H&E). Images were captured under a light microscope. The cell shape was assessed in each
PSC culture, and the length, width, and area of 50 cells were measured using FIJI software (National
Institutes of Health, Bethesda, MA, USA).

2.5. Immunocytochemistry

Cells were cultured in 96-well plates, fixed in 4% formaldehyde, blocked in 5% BSA in PBS, and
incubated overnight with anti-α-SMA (1:50) and anti-vimentin (1:200). Positive cells were visualized
by secondary antibodies Alexa Fluor 488 (anti-mouse) and Alexa Fluor 594 (anti-rabbit) conjugated
secondary antibodies (1:200), and DAPI was used for nuclear staining. For the detection of lipid
droplets, cells were stained using BODIPY and counterstained with DAPI. Images were captured using
EVOS FLoid Cell Imaging Station (Thermo Fisher Scientific). The percentage of positive cells was
counted in ten randomly selected fields (20× magnification) from each culture.
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2.6. Western Blot Analysis

Cells were washed with PBS, and total cell lysates were prepared by boiling for 5 min in Laemmli
buffer (4% SDS, 20% glycerol, and 120 mM Tris-HCl, pH 6.8) with the addition of 2% bromophenol
blue and 5% β-mercaptoethanol. Aliquots of protein were separated on 10% polyacrylamide gels
by electrophoresis (SDS-PAGE). The proteins were transferred to nitro-cellulose membranes using a
semidry transfer system (Bio-Rad). The membranes were blocked in Tris-buffered saline containing
0.1% Tween 20 (TBST) with 5% non-fat dry milk solution and incubated with the primary antibodies
as indicated (in TBST with 5% non-fat dry milk or BSA) overnight at 4 ◦C. The blots were then washed
3 times in TBST and incubated with HRP-conjugated secondary antibodies at room temperature for
1 h. The blots were visualized with LumiGLO® (KPL, Gaithersburg, MD, USA). Densitrometic analysis
of the immunoblots was obtained with Labworks Software (UVP, Cambridge, UK).

2.7. Cell Proliferation

2.7.1. Growth Curves

Growth curves and doubling times were determined by counting the number of viable cells
derived from freshly trypsinized cells in triplicates. Approximately 5000 cells/well were seeded
in 24-well plates, and the cell number was counted every 24 h for 5 days. Cells were cultured
and maintained according to the culture maintenance protocol for the respective PSC cultures. The
doubling time of the cell population was calculated from the logarithmic growth curve using the
following formula:

Doubling Time (h) =
duration log(2)

log(Number o f cells at last counting)− log(Number o f cells at f irst counting)

2.7.2. MTT-Based Proliferation Assay

Approximately 3000 cells/well were seeded in 96-well plates, and the change in the
number of viable cells over a period of 48 h was calculated using the MTT assay, according to
manufacturer’s instructions. Briefly, at 24 and 72 h after seeding, the cell viability was determined
spectrophotometrically at 570 nm by measuring the formation of purple-colored formazan crystals.
The proliferation rate was calculated as the percentage change in the number of viable cells relative to
the time interval.

2.8. Collagen Synthesis

Collagen synthesis was measured by quantification of [3H]-proline incorporation into acetic
acid-soluble proteins, as described previously [23,25]. Briefly, cells were seeded in 24-well plates at
a density of 20,000 cells/cm2 and cultured overnight. The following day, the medium was replaced
with serum-free DMEM (SFM) and incubated for an additional 24 h. Subsequently, the medium was
replaced with fresh SFM containing 100 µg/mL ascorbic acid, 100 µg/mL 3-aminopropionitrile, and
2 µCi/mL [3H]-proline. The reaction was stopped after 24 h by addition of 50 µL/mL 10 N acetic
acid. The cells were lysed by adding 100 µL 0.2 N acetic acid per well, and protein concentration
was determined spectrophotometrically at 595 nm using Bradford protein assay. The incorporation
of [3H]-proline into collagen was determined by liquid scintillation counting. The panel of various
PSC cultures were incubated with TGF-β (10 nM) for 24 h prior to incubation with the proline mix to
determine the stimulatory effect on collagen synthesis.

2.9. Preparation of Conditioned Media

To obtain PSC-conditioned medium (PSC-CM), sub-confluent PSC cultures in 10-cm2 Petri dishes
were washed thoroughly with PBS and incubated with fresh SFM (~10 mL) for 48 h. This conditioned
medium from the cultures was collected, centrifuged, and stored at 20 ◦C until further use.
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2.10. Effect of PSC-CM on Pancreatic Cancer Cells

2.10.1. DNA Synthesis

The effect of PSC-CM on DNA synthesis in PDAC cells was measured by the thymidine
incorporation assay, as previously described [23]. Briefly, BxPC-3 and MIA PaCa-2 cells were seeded in
12-well plates at a density of 10,000 cells/cm2, and cultured overnight in DMEM. The medium was
replaced with SFM and incubated for additional 24 h. The cells were then stimulated with PSC-CM for
24 h and pulsed with [3H]-thymidine (1 µCi/mL) for the last 4 h of stimulation. The incorporation of
[3H]-thymidine was determined by liquid scintillation counting.

2.10.2. Migration Assay

The effect of PSC-CM on cancer cell migration was evaluated using the scratch assay, as described
previously [26]. Briefly, confluent BxPC-3 and MIA PaCa-2 cells seeded in 12-well plates were cultured
with SFM overnight. Next day, scratch wounds were made, followed by incubation with SFM or
PSC-CM for 24 h in respective wells. The scratch wounds were observed in an Olympus inverted
microscope with a 4× objective. Pre-marks under the bottom of the wells consisting of one horizontal
and several vertical ink lines per well served to ensure that images were taken at the same observation
field for time point 0 h and 24 h. Images taken immediately after the addition of SFM (control
group) and PSC-CM (0 h) and at 24 h were obtained with an Olympus F-View II Soft Imaging System
High-Resolution CCD Camera. For each picture, the wound area was measured by FIJI software, as
previously described [27]. Percent wound closure was calculated for the time point of observation
based on the mean of eight observations from each PSC-CM relative to the wound closure in SFM.

2.10.3. Chemosensitivity

BxPC-3 and MIA PaCa-2 cells were cultured in 96-well plates at a density of 3000 cells/well and
treated for 48 h with gemcitabine at a final concentration range of 0.01 µM to 100 µM. The cell viability
and IC50 values were determined using the MTT assay, in which the degree of formazan crystals
formation is relative to the number of viable cells. IC50 is the amount of gemcitabine required for
inhibition of cancer cell growth by 50% compared to untreated controls. Furthermore, cancer cells
were also incubated with PSC-CMs from the PSC panel for 24 h prior to treatment with gemcitabine for
48 h at a final concentration of 10 µM. The response to gemcitabine was evaluated with the MTT assay.

2.11. Secretome Analysis

The PSC-CM samples (~10 mL) were concentrated down to 450 µL using 10 kDa cut off Amicon
Ultra centrifugal filter devices. Subsequently, the proteins were reduced, alkylated, and in-solution
digested with trypsin (Promega) overnight at 37 ◦C. The resulting peptides were desalted and
concentrated before mass spectrometry (MS) by the STAGE-TIP method using a C18 resin disk (3M
Empore). Each peptide mixture was analyzed in three technical replicates by nEASY-LC coupled to
QExactive Plus (ThermoElectron, Bremen, Germany) with EASY Spray PepMap® RSLC column (C18,
2 µm, 100Å, 75 µm × 50 cm). The resulting MS raw files were submitted to MaxQuant software version
1.6.1.0 for protein identification and label-free quantification using the Andromeda search engine.
Carbamidomethyl (C) was set as a fixed modification, and protein N-acetylation and methionine
oxidation were set as variable modifications. First search peptide tolerance of 20 ppm and main search
error 4.5 ppm were used. Trypsin without the proline restriction enzyme option was used, with two
allowed miscleavages. The minimal unique + razor peptide number was set to 1, and the allowed false
discovery rate (FDR) was 0.01 (1%) for peptide and protein identification. Label-free quantification
(LFQ) was employed with default settings. The SwissProt human or mouse database was used for
the database searches. Known contaminants as provided by MaxQuant and identified in the samples
were excluded from further analysis. Perseus software, version 1.5.6.0, was used for statistical analysis.
Pathway analysis of identified proteins was performed using the Kyoto Encyclopedia of Genes and
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Genomes (KEGG) database [28]. Gene ontology (GO) analysis was also conducted using the functional
annotation tool available through the DAVID Bioinformatics Database [29,30]. The workflow of the
procedure is described in Supplementary Materials Figure S1.

2.12. Statistical Analysis

All values are expressed as a mean ± standard error of mean (SEM). Statistical analysis of the
results was performed by a two-tailed unpaired student’s t-test for comparison of two treatment
groups. Differences were considered significant at p < 0.05.

3. Results

3.1. Phenotypic Characterization of the Various PSC Cultures

Hematoxylin and eosin-based morphological analysis revealed different cell morphologies in
the seven PSC cultures: polygonal in hPSCs, long thin spindle-shaped in HPaSteC, small roundish
in i-hPSC, and small stellate-shaped in i-mPSCs (Figure 1A). Notably, the nuclei of i-hPSC were
non-spherical, mostly cleaved and often horseshoe-shaped, and as such, they differed from the
spherical nuclei that were observed in the other six PSC cultures.

Cell size distribution analysis (Figure 1B) revealed that the average cell area of hPSC was 10.9-fold
and 5.1-fold higher compared to that of HPaSteC and i-hPSC, respectively, confirming the large
size of hPSC, as shown in Figure 1A. Furthermore, hPSCs were heterogenous regarding cell size,
whereas HPaSteC, i-hPSC, and i-mPSCs showed a relatively uniform cell size. Compared to hPSC,
the length/width ratio was 1.9-fold higher and 2.0-fold lower for HPaSteC and i-hPSC, respectively,
confirming the long thin cell shape of HPaSteC and the more roundish shape of i-hPSC (Figure 1A,
Supplementary Materials Figure S2). As activated PSCs are known to lose their vitamin A storing
cytoplasmic lipid droplets [7], BODIPY staining for the detection of neutral lipids was performed.
Lipid droplets were absent in hPSCs and immortalized human PSC cultures, but present in a minority
of HPaSteC cells (19.7 ± 7.8%) and to a large extent i-mPSCs (58.6 ± 2.6% and 63.0 ± 2.9% for C2 and
C3, respectively; Figure 1A,C). Furthermore, expression of proteins considered characteristic of PSCs
was analyzed by immunofluorescence and Western blot analysis. Independent of their origin and
activation status, all PSC cultures in the panel expressed strongly the mesenchymal marker vimentin,
whereas a variable expression of the PSC activation marker α-SMA was detected in six of the seven
PSC cultures (Figure 1A,D). α-SMA expression was not detectable in the i-hPSC culture either by
immunofluorescence or Western blot analysis (Figure 1D). Quantification of cells positive for α-SMA,
vimentin, and BIODIPY is shown in Figure 1C. GFAP was not detected in any of the PSC cultures
(data not shown), consistent with the reported loss of expression during culturing [31]. None of the
PSC cultures showed expression of the epithelial marker EpCAM (data not shown), excluding the
possibility of contamination by epithelial cells during isolation. Notably, both murine PSC cultures
displayed expression of α-SMA as well as the presence of cytoplasmic lipid droplets.
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for detection, α-SMA expression in HPaSteC cells is also presented in a separate blot. GAPDH was 

Figure 1. Phenotypic characterization of pancreatic stellate cells. (A) For morphological analysis, cells
were stained with hematoxylin and eosin (H&E), BODIPY for detection of cytoplasmic lipid droplets
and immunostained with anti-α-SMA (green) and anti-vimentin (red) antibodies. Nuclei were stained
with DAPI (blue). Scale bar = 100 µM. (B) Cell size of the various PSC cultures was determined by
measurement of the area of 50 cells for each PSC culture using FIJI software. (C) Number of positive
cells for α-SMA, vimentin, and BODIPY in percentage. (D) Cells were lysed and proteins subjected to
immunoblotting using anti-α-SMA and anti-vimentin antibodies. Due to high exposure time required
for detection, α-SMA expression in HPaSteC cells is also presented in a separate blot. GAPDH was
used as a loading control. PSC, pancreatic stellate cell; hPSC, human primary PDAC-derived PSC
culture; HPaSteC, PSCs from normal human pancreas; i-hPSC, immortalized human PSCs; i-mPSC C2
and C3, immortalized mouse PSCs clone 2 and 3.

3.2. Growth Curves and Doubling Times

All PSC cultures were followed for growth (cell division) over a period of five days, and the cell
numbers were counted at 24 h intervals. Immortalized cells were growing fastest and hPSCs slowest
(Figure 2A). The doubling time for immortalized cells was approximately 1 day, while for hPSC it was
about 2.5 days (Figure 2B). The primary PSCs from normal human pancreas (HPaSteC) were growing at
a rate similar to that of i-hPSC, with a doubling time of 25.8 ± 1.4 h vs. 28.6 ± 2.6 h, respectively. These
data were corroborated by a second experiment based on the MTT assay to determine the proliferation
rate. Compared to the average proliferation rate of hPSCs, HPaSteC, i-hPSC, i-mPSC C2, and i-mPSC
C3 showed a 4.2-, 2.4-, 3.1-, and 4.9-fold higher proliferation, respectively (Figure 2C). No significant
difference in cell viability was detected between HPaSteC cells cultured in special medium or in
DMEM with supplements, as used for the other primary PSC cultures (Figure 2D). β-galactosidase
staining of hPSC cultures revealed that approximately 10–24% of all primary cultures, including hPSCs
and HPaSteC, were positive for senescence during growth curve determination (Figure 2E,F).
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Figure 2. Growth curves and doubling time. Growth curves (A) and doubling time (B) were determined
by counting cell numbers every 24 h for 5 days. (C) Cell proliferation rate was obtained by measuring
the percentage of cell viability by the MTT assay at 24 and 72 h after cell seeding. (D) Percentage of cell
viability of HPaSteC cells measured by the MTT assay at 24 and 72 h after cell seeding in special or
DMEM medium. (E,F) β-galactosidase staining of primary cultures, including hPSCs and HPaSteC,
performed at 24 h (day 1) and 120 h (day 5) after cell seeding (E) and percentage positive cells, using
ImageJ software for cell counting (F). Data are mean ± SEM of triplicate determinations. ** p < 0.01
comparing average of hPSCs with HPaSteC, i-hPSC, and i-mPSCs for (C). PSC, pancreatic stellate cell;
hPSC, human primary PDAC-derived PSC culture; HPaSteC, PSCs from normal human pancreas;
i-hPSC, immortalized human PSCs; i-mPSC C2 and C3, immortalized mouse PSCs clone 2 and 3.

3.3. Collagen Synthesis

As activated PSCs are known to be the main producers of collagens in areas of fibrosis [32],
the in vitro collagen synthesis of the seven PSC cultures was determined. Compared to hPSCs isolated
from human PDAC tissue, the basal collagen synthesis was slightly lower in i-hPSC, although
the difference did not reach statistical significance (Figure 3A). HPaSteC showed 1.7-fold higher
basal collagen synthesis compared to the average collagen synthesis by hPSCs (Figure 3A). While
cross-species comparison has its limitations, a significantly higher level of basal collagen synthesis was
observed in i-mPSCs than in hPSCs (2.2- and 1.6-fold increase for cells from clone 2 and 3, respectively)
(Figure 3A). Furthermore, exposure to TGF-β (10 nM) for 24 h resulted in higher collagen synthesis in
all primary PSC cultures (both hPSCs and HPaSteC), while none of the immortalized PSC cultures
responded significantly to TGF-β stimulation (Figure 3B).
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Figure 3. Collagen synthesis. (A) Basal collagen synthesis. (B) Collagen synthesis after TGF-β
(10 nM) stimulation for 24 h. Measurement based on incorporation of [3H]-proline into collagen.
Data are mean ± SEM of triplicate determinations. (C) Cells treated with or without TGF-β for
24 h were lysed and proteins subjected to immunoblotting using antibodies against TGF-β receptor
I and II, phospho-Smad-2, Smad-2, phospho-Smad-3, and Smad-3. GAPDH was used as loading
control. * p < 0.05, ** p < 0.01 comparing average of hPSCs with HPaSteC, i-mPSCs for (A); ** p < 0.01
comparing control (non-treated) cells with TGF-β treated cells for (B). PSC, pancreatic stellate cell;
hPSC, human primary PDAC-derived PSC culture; HPaSteC, PSCs from normal human pancreas;
i-hPSC, immortalized human PSCs; i-mPSC C2 and C3, immortalized mouse PSCs clone 2 and 3.

Protein expression analysis revealed that the immortalized PSC cultures from both human and
mouse origin displayed substantially lower expression of receptor TGF-β RI compared to primary
PSC cultures. No significant difference was observed in TGF-β RII expression across the panel of PSC
cultures (Figure 3C). All primary PSC cultures displayed TGF-β-induced increased phosphorylation
of Smad-2 and -3. Despite relatively low expression of TGF-β RI, the immortalized human PSCs
displayed TGF-β-induced Smad-2, -3 phosphorylation. Phosphorylation of Smad-2, -3 was detected in
neither of the immortalized mouse PSCs cultures (Figure 3C).

3.4. Effect of PSC-CM on Cancer Cell Proliferation, Migration, and Chemosensitivity

Next, the ability of PSC-CM to stimulate DNA synthesis and migration in BxPC-3 and MIA
PaCa-2 cell lines was assessed. PSC-CM from all primary PSC cultures (both hPSCs and HPaSteC)
induced DNA synthesis (fold change in the range of 1.3 to 1.7) in both cancer cell lines (Figure 4A),
while PSC-CM collected from immortalized PSC cultures (both human and murine origin) showed no
significant increase in DNA synthesis, except for the PSC-CM from i-mPSC C2 in MIA PaCa-2 cells.
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Figure 4. Effect of PSC-CM on pancreatic cancer cell proliferation and migration. (A) Cancer cell
proliferation: BxPC-3 and MIA PaCa-2 cells were incubated with SFM or PSC-CMs for 24 h, and
DNA synthesis was determined by [3H]-thymidine incorporation assay. Data are mean ± SEM of
triplicate determinations. (B) Cancer cell migration: BxPC-3 and MIA PaCa-2 cells were cultured to
confluence, and scratch wounds were established. Images of the wound area were taken immediately
after the scratches and 24 h after incubation with SFM or PSC-CMs. The wound area was measured
using FIJI software. Data are mean ± SEM of eight scratches for each PSC-CM. # p < 0.1, * p < 0.05,
** p < 0.01 comparing control (SFM) and PSC-CM. PSC, pancreatic stellate cell; hPSC, human primary
PDAC-derived PSC culture; HPaSteC, PSCs from normal human pancreas; i-hPSC, immortalized
human PSCs; i-mPSC C2 and C3, immortalized mouse PSCs clone 2 and 3; PSC-CM, PSC-conditioned
medium; SFM, serum-free DMEM.

Migration of both BxPC-3 and MIA PaCa-2, as assessed by the scratch assay, was induced by
conditioned medium from all PSC cultures, except i-hPSC (Figure 4B, Supplementary Materials
Figure S3). The magnitude of migration stimulated by the PSC-CM was variable across the PSC
cultures: it was highest for PSC-CM from HPaSteC (~2.5-fold in both BxPC-3 and MIA PaCa-2) and
lower for PSC-CM from hPSCs and i-mPSCs (in BxPC-3 ~1.7- and ~1.5-fold, respectively; in MIA
PaCa-2 ~1.5- and ~1.8-fold, respectively).

To evaluate the effect of PSC-CM on the chemosensitivity of BxPC-3 and MIA PaCa-2, first the dose
response curves for gemcitabine in both PDAC cell lines were determined by measuring the in vitro
cytotoxic effect by the MTT assay. Gemcitabine reduced cancer cell viability in a dose-dependent
fashion, with a larger effect in BxPC-3 than in MIA PaCa-2 cells (Figure 5A). At a single concentration
of 10 µM, the reduction in viability was 62.7 ± 2.5% and 53 ± 4.8% in BxPC-3 and MIA PaCa-2 cells,
respectively (Figure 5A). The IC50 values suggested that BxPC-3 cells (IC50 = 2.7 µM) were relatively
more sensitive to gemcitabine than MIA PaCa-2 cells (IC50 = 5.8 µM), which is in accordance with
previous data [33]. It is important to note that there was a significant population in each cell line that
was inherently resistant to gemcitabine, 11.9% and 20.9% in BxPC-3 and MIA PaCa-2 cells, respectively
(Figure 5A). In a second step, the effect of the various PSC-CM on the chemosensitivity of BxPC-3
and MIA PaCa-2 was analyzed. Both PDAC cell lines developed significant resistance to gemcitabine
following 24 h incubation with PSC-CM from the primary PSC cultures (both hPSCs and HPaSteC)
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(~30% for BxPC-3 and ~40% for MIA PaCa-2), while PSC-CM from all immortalized cell cultures
showed no significant effect on cancer cell sensitivity to gemcitabine (Figure 5B).
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Figure 5. Effect of PSC-CM on chemosensitivity for gemcitabine of pancreatic cancer cells.
(A) Gemcitabine dose response curves: BxPC-3 and MIA PaCa-2 cells (3000 cells/well) seeded on
96-well plates were incubated with varying concentrations of gemcitabine for 48 h and evaluated
for cell viability using the MTT assay. IC50 values for gemcitabine were calculated using GraphPad
Prism 4.0 software. (B) BxPC-3 and MIA PaCa-2 cells were incubated with PSC-CM for 24 h prior to
incubation with gemcitabine (10 µM) for 48 h. Cell viability was determined using the MTT assay. Data
are mean ± SEM of triplicate determinations. The table indicates gemcitabine-induced cytotoxicity
in percentage and PSC-CM-induced resistance to gemcitabine, calculated by relative reduction in
cytotoxicity between SFM and PSC-CM. * p < 0.05, ** p < 0.01 comparing SFM with PSC-CM. PSC,
pancreatic stellate cell; hPSC, human primary PDAC-derived PSC culture; HPaSteC, PSCs from normal
human pancreas; i-hPSC, immortalized human PSCs; i-mPSC C2 and C3, immortalized mouse PSCs
clone 2 and 3; PSC-CM, PSC-conditioned medium; SFM, serum-free DMEM.

3.5. Secretome Analysis

The composition of conditioned medium from various PSC cultures was investigated by proteomics-
based analysis of the secretome preparations. A total of 1013 different proteins (Homo sapiens) were
identified in PSC-CM from hPSC, HPaSteC, and i-hPSC. A complete list of all proteins together
with their identification parameters are provided in Supplementary Materials Table S1. Among
these secreted proteins, 703 and 431 proteins were differentially secreted by HPaSteC and i-hPSC
cells, respectively, compared to hPSCs. The majority of these differentially secreted proteins were
upregulated (83% and 69% in PSC-CM from HPaSteC and i-hPSC, respectively), whereas the remainder
were downregulated (Figure 6A; Supplementary Materials Table S2).
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Figure 6. Secretome analysis of PSC-CM. Conditioned medium from various PSC cultures were
subjected to proteomics analysis using LC-MS/MS. (A) Protein identifications from three replicates for
each PSC culture and number of differentially expressed genes. (B,D) Compared to hPSC, differentially
secreted proteins by HPaSteC (B) and by i-hPSC (D) detected by LC-MS were interrogated in terms of
functional annotation by the DAVID Bioinformatics Resource tool. The representative GO terms cluster
groups with top 10 enrichment score are presented. The horizontal axis represents the significance
(p-value) for each term, while the vertical axis represents the GO categories. (C,E) Heatmap of protein
abundance pattern for the 50 most significantly downregulated and upregulated proteins (fold change).
Red and green color indicates high and low expression, respectively. GO, Gene ontology; PSC,
pancreatic stellate cell; hPSC, human primary PDAC-derived PSC culture; HPaSteC, PSCs from normal
human pancreas; i-hPSC, immortalized human PSCs; PSC-CM, PSC-conditioned medium.

To determine the functional role of the differentially secreted proteins, a GO analysis was
undertaken using the DAVID bioinformatic resource tool, which revealed a significant representation of
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categories mainly related to ECM, in particular “ECM structure”, “ECM assembly”, and “collagen fibril
organization” (Figure 6B,D). STRING based in-depth analysis of these differentially regulated proteins
showed that the majority of them are involved in biological processes such as cellular component
organization, ECM organization, ECM assembly and disassembly, as well as in other functions
including RNA and protein binding. These differentially secreted proteins belong to structural cellular
components such as extracellular vesicles, exosomes, and membrane bound vesicles. KEGG pathways
analysis suggested that the majority of proteins belong to the following pathways: ECM-receptor
interaction, focal adhesion, and metabolic pathways. A heatmap of the 50 most differentially expressed
proteins showed that the major ECM components—collagens—were expressed at a significantly lower
level in immortalized PSC cultures than in hPSCs and HPaSteC (Figure 6C,E, Supplementary Materials
Figure S1 and Table S3). Secretome analysis of conditioned medium from mouse immortalized PSCs
led to the identification of a total of 876 different proteins (Mus musculus) in PSC-CM from i-mPSC
C2 and i-mPSC C3 cells (of these, 872 proteins had more than one peptide). A list of all proteins is
provided in Supplementary Materials Table S4.

4. Discussion

Pancreatic ductal adenocarcinoma has the worst prognosis of all solid cancers [1], which is
mainly due to the late diagnosis of the disease and pronounced resistance to most conventional
chemotherapeutic agents [4]. The tumor stroma, which is exceedingly prominent in PDAC, has been
attributed an increasingly important role in chemoresistance, although the exact underlying
mechanisms are not fully known [34]. So far, stroma-targeting therapies have shown mixed results
in clinical studies [12,35,36], which highlights the need for preclinical research into the complex
interactions between the cancer cell population and tumor stroma, in which PSC play a central
role [37,38]. Currently, much of the research in this field is based on in vitro studies with PSC cultures
that may be primary or immortalized and may be of varying origin in terms of species (human
or murine), status of the pancreas (normal, chronic pancreatitis or PDAC), and donor age [17,39].
While preliminary data point at differences in transcriptional fingerprints between PSCs from chronic
pancreatitis and PDAC [22], the impact of the considerable differences in origin on the phenotype and
functional traits has not been investigated, leaving unanswered questions about the comparability of
data from studies using different PSC cultures. In this study, a panel of primary and immortalized,
human and murine PSC cultures was characterized, and findings reveal considerable differences in
basic cellular processes and PSC-specific functions as well as in key interactions with PDAC cell lines
(summary in Table 1).

Morphometric assessment revealed a variable but overall considerably larger size of primary
human compared to HPaSteC from normal human pancreas and immortalized PSCs. A characteristic
stellate or polygonal shape was found in all PSC cultures, except for the cells of HPaSteC that were
thin, spindle-shaped and those of immortalized human PSCs that were roundish. The latter PSC
culture also lacked the expression of α-SMA, an activation marker of PSCs, which was found being
expressed in the remainder of the PSC panel, albeit at low levels in the HPaSteC culture. As anticipated,
cytoplasmic lipid droplets that are typically found in quiescent PSCs in normal pancreas, were absent
in the primary human PDAC-derived PSC cultures and present in a minority of cells in HPaSteC which
expressed α-SMA at low levels. Interestingly, they were also lacking in the α-SMA-negative i-hPSC
culture, but were present to a large extent in the i-mPSC cultures, pointing at a certain divergence
and heterogeneity in activation status and marker expression. Cell proliferation was high in HPaSteC,
which was unexpected considering the origin of this culture from normal pancreas, in which PSCs are
predominantly quiescent [32]. While the proportion of senescent cells was similar in HPaSteC and
primary hPSCs, the doubling time of the latter was much longer, indicating a true slower growth pace.
Proliferation was high in immortalized PSC cultures, which is the reason why the latter are preferably
used for in vitro studies. The continued high proliferation in i-hPSC and i-mPSC cultures is also the
reason why these are traditionally referred to as “immortalized” PSCs, despite the fact that the method



Cells 2019, 8, 23 14 of 18

of “immortalization”, i.e., transfection with SV40 Large T Antigen, results in major disruptions that
are more akin to transformation and may explain some of the observed major divergences that are
discussed below.

Table 1. Characteristics of the various pancreatic stellate cell (PSC) cultures.

Cell Culture hPSCs HPaSteC i-hPSC (RLT-PSC) i-mPSC (C2, C3)

Origin
- Donor species

- Donor age
- Pancreas disease status

Human
Adult
PDAC

Human
Fetal

Normal

Human
Adult

Chronic pancreatitis

Mice
Adult

Normal

Method of isolation Outgrowth
method

Not known (due
to proprietary

reasons)
Outgrowth method Accudenz gradient

centrifugation

Immortalization method No
immortalization

No
immortalization

Transfection with
retrovirus containing
SV40 large T antigen

and hTERT

Transfection with
retrovirus containing
SV40 large T antigen

Morphology Large, polygonal Long, thin,
spindle-shaped Small, roundish Small, stellate-shaped

α-SMA expression Positive (100%) Positive (100%) Negative Positive (72%, 75%)
Vimentin expression Positive (100%) Positive (100%) Positive (100%) Positive (100%)

Lipid droplets (BODIPY) Negative Positive (20%) Negative Positive (59%, 63%)
Doubling time (h) 54.9 ± 3.4 25.8 ± 1.4 28.6 ± 2.5 22.0 ± 0.2
TGF-β stimulated
collagen synthesis Upregulated Upregulated No change No change

Effect of PSC conditioned medium on pancreatic cancer cells (BxPC-3 and MIA PaCa-2):

DNA synthesis Upregulated Upregulated No change
No change except:

Upregulated for C2 in
MIA PaCa-2

Migration Upregulated Upregulated No change Upregulated
Induction of resistance to

gemcitabine Yes Yes No No

Remarkable and to some extent unanticipated differences were observed also regarding collagen
synthesis, both at base line and following TGF-β stimulation. Basal collagen synthesis was
unexpectedly high in HPaSteC, considering the fact that PSCs in normal pancreas are assumed not to
produce collagen, unless stimulated [37,40]. This more-than-anticipated basal collagen synthesis
may be linked to the above-described features of cell activation in the HPaSteC culture. Basal
collagen synthesis was also remarkably high in i-mPSCs but not in i-hPSC, despite the fact that
the latter was isolated from a pancreas with chronic pancreatitis [18], in which PSCs are the main
effectors of pancreatic fibrosis [41]. Interestingly, TGF-β stimulation of collagen synthesis was observed
only in primary PSC cultures, suggesting that immortalized human and murine PSCs lack factors
that are required for the transduction of TGF-β stimulation. These findings were substantiated by
the observation that all primary human PSC cultures expressed relatively high TGF-β RI, which
thereby facilitated TGF-β-induced increased phosphorylation of Smad-2, -3, and resulted in increased
collagen synthesis. Interestingly, despite low TGF-β RI, i-hPSCs displayed TGF-β-induced increased
phosphorylation of Smad-2, -3; however, this did not translate into increased collagen synthesis,
suggesting that other mechanisms may be involved, including the different origin of cells. Failure
of TGF-β to induce collagen synthesis in immortalized mouse PSC cultures could be linked to
the observed significantly lower expression of TGF-β RI in these cultures. Of particular interest
are the complex interactions between PSCs and PDAC, especially the ability of PSCs to influence
cancer progression and treatment resistance [41–44]. Increased DNA synthesis and migration of
the cancer cells as well as increased resistance to gemcitabine are possible mechanisms underlying
these tumor-promoting effects. As anticipated, and in accordance with the literature [31,43,45], these
effects were observed with the conditioned medium from primary human PSC cultures. Interestingly,
however, they were lacking when the same cancer cell lines were exposed to conditioned medium
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from immortalized human and murine PSC cultures. This suggests that secreted factors involved in
these interactions are either lacking or present at too low a level to effectuate these crucial alterations
in the PDAC cell lines.

In view of these findings, the composition of the secretome from the various PSC cultures was
investigated by proteomics-based analysis. This revealed that, compared to hPSCs, 69% and 43% of
the overall 1013 identified proteins were differentially secreted by HPaSteC and i-hPSC, respectively.
While these differentially expressed proteins are involved in various cell biological processes, many of
these relate to the modeling of the ECM. Interestingly, collagens were found at a considerably lower
level in the secretome of immortalized than primary human PSCs.

Taken together, the results of this study confirm that hPSCs have a phenotype that is deemed
characteristic of PSCs in PDAC and consists of an activated cell status, low proliferation, TGF-β
inducible collagen synthesis, and a profound impact on cancer cells in terms of increased DNA
synthesis, cell migration, and resistance to gemcitabine. As anticipated, the proliferation rate was
found to be high in i-hPSC, a feature that makes this PSC culture attractive for in vitro studies. However,
i-hPSC lacked functions that are considered key to PSCs: increased collagen synthesis following TGF-β
stimulation and induction of DNA synthesis, cell migration and resistance to gemcitabine in PDAC
cell lines. Similar observations were made for i-mPSC, except for upregulated DNA synthesis in
MIA PaCa by clone 2 (i-mPSC C2). HPaSteC cultures surpassed hPSCs in all aspects, except for the
expression of α-SMA, which was low. These findings are difficult to reconcile with the origin of this
culture from PSCs in normal pancreas and the low expression of α-SMA, which suggests a low-level
activation status. While investigations into the reasons for this unexpected phenotype are beyond
the scope of this study, isolation by a possibly different method (e.g., density gradient centrifugation)
and the recommended use of a culture medium with stellate cell growth supplement may be possible
contributions, although the latter had in our experience no significant effect on cell viability when
compared with DMEM growth medium that was used for other cultures.

While the identification of the reasons for the observed differences between the various PSC
cultures is well beyond the scope of this study, the profound impact of immortalization along with
the risk of phenotypic drift as passage numbers increase are likely important causes for the observed
differences between primary and immortalized PSC cultures [46]. The status of PSC activation at the
time of isolation may also play a role as well as the supplementation of growth-stimulating factors to
the culture medium, as it is the case for HPaSteC. Furthermore, it has to be considered that PSC cultures
may be heterogeneous and contain subpopulations of PSCs that differ in, for example, activation
status, as evidenced by the partial loss of lipid droplets in i-mPSC. In this respect, quantitative—but
not qualitative—differences between the three hPSCs point at a degree of functional inter-tumor
heterogeneity, also for these non-neoplastic cell populations [47]. Finally, it needs to be mentioned that
the hPSCs analyzed in this study were isolated by the outgrowth method, and therefore in culture for
several weeks, which may have altered, at least to some degree, their character compared to that of
true primary PSCs.

Interpretation of the results of this study has certain limitations, because the various PSC cultures
that are compared differ in origin (i.e., species, age), condition of the donor pancreas (i.e., normal,
pancreatitis, PDAC), and whether the cultures were primary or immortalized. These multiple
concomitant divergent features impede direct comparison and in particular, they preclude identification
of the impact of immortalization on the PSC phenotype. Investigation of the latter requires separate
studies in which primary and immortalized human PSCs of the same donor are compared for their
phenotypic and genotypic features.

In conclusion, this study reveals significant differences in key phenotypic and functional features
between various PSC cultures that are commonly used for in vitro experiments. Awareness of these
differences is important when selecting the most appropriate PSC culture for a given experiment as
well as when comparing results from studies that used different PSC cultures. Consideration of these
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differences may explain seemingly conflicting results and facilitate the translation of in vitro findings
to clinical application.
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