6 research outputs found

    Southern Cosmology Survey II: Massive Optically-Selected Clusters from 70 square degrees of the SZE Common Survey Area

    Full text link
    We present a catalog of 105 rich and massive (M>3\times10^{14}M_{\sun}) optically-selected clusters of galaxies extracted from 70 square-degrees of public archival griz imaging from the Blanco 4-m telescope acquired over 45 nights between 2005 and 2007. We use the clusters' optically-derived properties to estimate photometric redshifts, optical luminosities, richness, and masses. We complement the optical measurements with archival XMM-Newton and ROSAT X-ray data which provide additional luminosity and mass constraints on a modest fraction of the cluster sample. Two of our clusters show clear evidence for central lensing arcs; one of these has a spectacular large-diameter, nearly-complete Einstein Ring surrounding the brightest cluster galaxy. A strong motivation for this study is to identify the massive clusters that are expected to display prominent signals from the Sunyaev-Zeldovich Effect (SZE) and therefore be detected in the wide-area mm-band surveys being conducted by both the Atacama Cosmology Telescope and the South Pole Telescope. The optical sample presented here will be useful for verifying new SZE cluster candidates from these surveys, for testing the cluster selection function, and for stacking analyzes of the SZE data.Comment: 13 pages, 7 Figures. Accepted for publication to ApJSS. Full resolution plots and additional material available at http://peumo.rutgers.edu/~felipe/e-prints

    The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected Via the Sunyaev-Zel'Dovich Effect

    Get PDF
    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe

    The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect

    Get PDF
    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8e14 Msun, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1e15 Msun and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in ApJ. Higher resolution figures available at: http://peumo.rutgers.edu/~felipe/e-prints

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi
    corecore