73 research outputs found

    Sodium Periodate as a Selective Oxidant for Diclofenac Sodium in Alkaline Medium: A Quantum Chemical Approach

    Get PDF
    Diclofenac sodium is a well known anti-inflammatory drug. It has also been proclaimed to exhibit adverse effects on aquatic animals through sewage and waste water treatment plants. Kinetic and mechanistic studies of the novel oxidation of diclofenac sodium (DFS) by sodium periodate were discussed with an emphasis on structure and reactivity by using kinetic and computational approach. The proposed work had been studied in alkaline medium at 303 K and at a constant ionic strength of 0.60 mol.dm−3. Formation of [2-(2,6-dicloro-phynylamino)-phenyl]-methanol as the oxidation product of DFS is confirmed with the help of structure elucidation. The active species of catalyst, oxidant and oxidation products were recognized by UV and IR spectral studies. Proton inventory studies in H2O−D2O mixtures had been shown the involvement of a single exchangeable proton of OH− ion in the transition state. All quantum chemical calculations were executed at level of density functional theory (DFT) with B3LYP function using 6-31G (d,p) basis atomic set for the validation of structure, reaction and mechanism. Molecular orbital energies, nonlinear optical properties, bond length, bond angles, reactivity, electrophilic and nucleophilic regions were delineated. Influence of various reactants on rate of chemical reaction were also ascertained and elucidated spectro-photometrically. Activation parameters have been assessed using Arrhenius-Eyring plots. A suitable mechanism consistent with observed kinetic results had been implicated and rate law deduced. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Quantitative structure–activity relationship based modeling of substituted indole Schiff bases as inhibitor of COX-2

    Get PDF
    AbstractWe have performed the quantitative structure activity relationship (QSAR) study for N-1 and C-3 substituted indole shiff bases to understand the structural features that influence the inhibitory activity toward the cyclooxygenase-2 (COX-2) enzyme. The calculated QSAR results revealed that the drug activity could be modeled by using molecular connectivity indices (0χ, 1χ, 2χ), wiener index (W) and mean wiener index (WA) parameters. The predictive ability of models was cross validated by evaluating the low residual activity, appreciable cross validated r2 values (Rcv2) and leave one out (LOO) technique

    A study of spectrum and outcome of liver diseases in pregnant women at BRD medical college

    Get PDF
    Background: Different spectrum of liver disease can affect outcome of pregnancy. The incidence of liver disorders in pregnancy varies in different parts of the world. The present study was designed to see the incidence, spectrum, and outcome of liver disease in pregnancy.Methods: All pregnant women with deranged liver profile, attending antenatal clinic and labour room in the department of Obstetrics and Gynecology of BRD Medical College over the period of one year (August 2015 to July 2016) were included in the study. Enrolled cases were followed up till discharge in respect to maternal and fetal outcome.Results: Liver disease was found in 214 (2.37%) cases out of 9011 pregnancies. Pregnancy specific liver disease was the most common type (85.98%). Among pregnancy specific liver disease Hypertensive disorders of pregnancy was the commonest abnormality (66.35%). Rest were Cholestasis, Acute viral hepatitis, Chronic liver disease, Hyperemesis gravidarum, Acute fatty liver of pregnancy. Out of 214, 22 patients dropped out. Overall maternal and perinatal mortality were 13.02% and 29.17% respectively.Conclusions: Liver disease in pregnancy is not uncommon and it can seriously affect pregnancy outcome if not treated properly on time. Early diagnosis (by clinical suspicion and blood investigation) and timely intervention can improve maternal and fetal outcome in pregnancy with liver disease

    Kinetic, Mechanistic, and Thermodynamic Studies for Oxidation of L-Alanine by Alkaline Sodium Periodate in Presence of Os(VIII) in its Nano Concentration Range as Homogenous Catalyst

    Get PDF
    The kinetics and mechanism of homogenously Os(VIII) catalysed oxidation of L-alanine (L-ala) by alkaline sodium periodate in temperature range 30 to 45°C have been studied. The involvement of free radicals was observed in the reactions. The oxidation products were acetaldehyde and IO3-, identified by spot test and spectroscopic studies. The stoichiometry between [L-ala]: IO4- is 1:2. The reaction show negligible effect of mercuric acetate and ionic strength of medium. The experimental results show first order in oxidant [NaIO4] and negative effect of [OH-]. The order in [Os(VIII)] as well as L-alanine was unity. A mechanism involving the formation of complex between L-alanine and Os(VIII) was proposed. The reaction constants concerned in the different steps of mechanism were calculated at different temperature. The activation parameters for the slow step of mechanism were computed and discussed. The thermodynamic quantities were also calculated for the reaction. Copyright © 2018 BCREC Group. All rights reserved Received: 11st October 2017; Revised: 11st February 2018; Accepted: 18th February 2018; Available online: 11st June 2018; Published regularly: 1st August 2018 How to Cite: Gupta, M., Srivastava, A., Srivastava, S. (2018). Kinetic, Mechanistic, and Thermodynamic Studies for Oxidation of L-Alanine by Alkaline Sodium Periodate in Presence of Os(VIII) in its Nano Concentration Range as Homogenous Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 355-364 (doi:10.9767/bcrec.13.2.1583.355-364

    Targeted Therapies in Cancer Treatment: Unveiling the Latest Breakthroughs and Promising Approaches

    Get PDF
    This review article delves into the realm of cancer treatment, specifically focusing on targeted therapies. It aims to present the most recent breakthroughs and promising approaches in this rapidly evolving field. Targeted therapies have emerged as a revolutionary approach in cancer treatment, aiming to selectively and precisely attack cancer cells while sparing normal tissues. This article explores various targeted therapy strategies, including monoclonal antibodies, small molecule inhibitors, immunotherapies, and gene therapies. In recent years, there have been significant advancements in understanding the molecular and genetic basis of cancer, which has led to the identification of novel therapeutic targets. The article sheds light on these newly discovered targets and highlights their potential in designing more effective and personalized treatment regimens for cancer patients. Furthermore, the review addresses the challenges and limitations associated with targeted therapies, such as resistance mechanisms and the heterogeneity of tumors. Strategies to overcome these obstacles are discussed, including combination therapies and the development of next-generation targeted agents. The role of precision medicine in cancer treatment is also explored, emphasizing the importance of biomarker-guided therapy selection to optimize treatment outcomes. Additionally, the review touches upon the integration of targeted therapies with conventional treatments, such as chemotherapy and radiation therapy, to enhance overall treatment efficacy. Finally, the article examines ongoing clinical trials and preclinical studies that are investigating cutting-edge targeted therapies, showcasing the potential impact of these approaches in transforming cancer care. In conclusion, targeted therapies in cancer treatment represent a rapidly expanding field with remarkable breakthroughs and promising avenues. Understanding the latest advancements and challenges in this domain is essential to harness the full potential of targeted therapies and ultimately improve patient outcomes in the battle against cancer

    The Rise of RNA-Based Therapeutics: Recent Advances and Therapeutic Potential

    Get PDF
    In recent years, RNA-based therapeutics have emerged as a groundbreaking field, offering innovative approaches for drug development and therapeutic interventions. This review article presents a comprehensive exploration of the advancements in RNA-based therapeutics, focusing on key modalities such as RNA interference (RNAi), antisense oligonucleotides (ASOs), messenger RNA (mRNA) vaccines, and other emerging RNA-based therapies. The introduction provides an insightful overview of the potential of RNA as a therapeutic target, highlighting its unique mechanisms of action and its transformative role in precision medicine. Subsequently, the review delves into the intricacies of RNAi, explaining the function of small interfering RNAs (siRNAs) and microRNAs (miRNAs) in selectively silencing disease-associated genes, thereby opening new avenues for therapeutic interventions. Antisense oligonucleotides (ASOs) are discussed in detail, elucidating how they target mRNA for degradation or modulation of splicing, offering promising solutions for treating genetic disorders, neurodegenerative diseases, and viral infections. Additionally, the groundbreaking success of mRNA vaccines is explored, with an emphasis on their role in combatting infectious diseases like COVID-19 and their potential application in cancer immunotherapy and other therapeutic areas. Addressing the critical issue of delivery challenges in RNA-based therapeutics, the review presents various strategies to enhance stability, cellular uptake, and minimize immunogenicity, thereby improving the effectiveness of these therapies in reaching their intended targets. Clinical successes and challenges of RNA-based therapeutics are critically evaluated, providing insights into ongoing clinical trials and approved therapies. Success stories underscore the transformative potential of RNA-based treatments, while safety concerns are addressed, paving the way for safer and more efficient therapeutic applications. The review concludes by exploring future prospects and innovations in the field, highlighting novel delivery strategies, advancements in RNA editing technologies, and the promise of combination therapies to augment therapeutic outcomes. Regulatory considerations and commercialization challenges are also discussed, offering an understanding of the regulatory landscape for RNA-based therapeutics and the potential for market growth. In conclusion, this review article serves as an informative resource for researchers, clinicians, and pharmaceutical professionals, shedding light on the rapid progress in RNA-based therapeutics and their potential to revolutionize disease treatment. By integrating knowledge from diverse sources, this review contributes to advancing the field and underscores the exciting possibilities of RNA-based interventions in improving patient outcomes and addressing unmet medical needs

    Intermittent Food Absence Motivates Reallocation of Locomotion and Feeding in Spotted Munia (Lonchura punctulata)

    Get PDF
    Background: Daily feeding and locomotion are interrelated behaviours. The time spent in feeding and rate of food intake depends on food availability. In low food condition, the birds would show intense movement (locomotion) for a longer time throughout the day however during abundant food supply they may chose higher activity and food intake in the morning and evening only. In the present study we hypothesized that in Spotted Munia (Lonchura punctulata), intermittent food availability during day would reallocate their interrelated behaviors, the feeding (food intake) and locomotor activity patterns.  Methods: Two groups of birds (N = 6 each) were kept individually in activity cages under 12L:12D. Group 1 (Control; C) had ad libitum food but group 2 (Treatment; T) had food for 6 hours only (2 h presence followed by 2 h absence; 2P:2A) during 12 hour light period. In the first week, group 2 received food with ‘lights on’ (TI; ZT 0–2, 4–6 and 8–10; where ZT 0= zeitgeber time 0, time of lights ON). In the following week, the food was given 2 hours after ‘lights on’ (TII; ZT 2–4, 6–8, 10–12). The food intake and locomotor activity under each condition were observed.  Results: The results showed that locomotor activity was induced during food deprivation and suppressed during food availability. Also the food deprivation led to increased food intake. Conclusion: Our results suggest that intermittent food availability/ deprivation reallocates the locomotor activity and food intake in Spotted Munia

    A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands

    Get PDF
    Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hall- marks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells

    Innate Immunity and Biological Therapies for the Treatment of Sjögren’s Syndrome

    No full text
    Sjögren’s syndrome (SS) is a systemic autoimmune disorder affecting approximately 3% of the population in the United States. This disease has a female predilection and affects exocrine glands, including lacrimal and salivary glands. Dry eyes and dry mouths are the most common symptoms due to the loss of salivary and lacrimal gland function. Symptoms become more severe in secondary SS, where SS is present along with other autoimmune diseases like systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. It is known that aberrant activation of immune cells plays an important role in disease progression, however, the mechanism for these pathological changes in the immune system remains largely unknown. This review highlights the role of different immune cells in disease development, therapeutic treatments, and future strategies that are available to target various immune cells to cure the disease
    corecore