459 research outputs found

    Hardy-Carleman Type Inequalities for Dirac Operators

    Full text link
    General Hardy-Carleman type inequalities for Dirac operators are proved. New inequalities are derived involving particular traditionally used weight functions. In particular, a version of the Agmon inequality and Treve type inequalities are established. The case of a Dirac particle in a (potential) magnetic field is also considered. The methods used are direct and based on quadratic form techniques

    The various power decays of the survival probability at long times for free quantum particle

    Get PDF
    The long time behaviour of the survival probability of initial state and its dependence on the initial states are considered, for the one dimensional free quantum particle. We derive the asymptotic expansion of the time evolution operator at long times, in terms of the integral operators. This enables us to obtain the asymptotic formula for the survival probability of the initial state ψ(x)\psi (x), which is assumed to decrease sufficiently rapidly at large ∣x∣|x|. We then show that the behaviour of the survival probability at long times is determined by that of the initial state ψ\psi at zero momentum k=0k=0. Indeed, it is proved that the survival probability can exhibit the various power-decays like t−2m−1t^{-2m-1} for an arbitrary non-negative integers mm as t→∞t \to \infty , corresponding to the initial states with the condition ψ^(k)=O(km)\hat{\psi} (k) = O(k^m) as k→0k\to 0.Comment: 15 pages, to appear in J. Phys.

    A microscopic derivation of the quantum mechanical formal scattering cross section

    Full text link
    We prove that the empirical distribution of crossings of a "detector'' surface by scattered particles converges in appropriate limits to the scattering cross section computed by stationary scattering theory. Our result, which is based on Bohmian mechanics and the flux-across-surfaces theorem, is the first derivation of the cross section starting from first microscopic principles.Comment: 28 pages, v2: Typos corrected, layout improved, v3: Typos corrected. Accepted for publication in Comm. Math. Phy

    On the Localization of One-Photon States

    Get PDF
    Single photon states with arbitrarily fast asymptotic power-law fall-off of energy density and photodetection rate are explicitly constructed. This goes beyond the recently discovered tenth power-law of the Hellwarth-Nouchi photon which itself superseded the long-standing seventh power-law of the Amrein photon.Comment: 7 pages, tex, no figure

    The rigged Hilbert space approach to the Lippmann-Schwinger equation. Part I

    Full text link
    We exemplify the way the rigged Hilbert space deals with the Lippmann-Schwinger equation by way of the spherical shell potential. We explicitly construct the Lippmann-Schwinger bras and kets along with their energy representation, their time evolution and the rigged Hilbert spaces to which they belong. It will be concluded that the natural setting for the solutions of the Lippmann-Schwinger equation--and therefore for scattering theory--is the rigged Hilbert space rather than just the Hilbert space.Comment: 34 pages, 1 figur

    Localization on quantum graphs with random vertex couplings

    Full text link
    We consider Schr\"odinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. Using the technique of self-adjoint extensions we obtain conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges

    On the Relationship of Quantum Mechanics to Classical Electromagnetism and Classical Relativistic Mechanics

    Full text link
    Some connections between quantum mechanics and classical physics are explored. The Planck-Einstein and De Broglie relations, the wavefunction and its probabilistic interpretation, the Canonical Commutation Relations and the Maxwell--Lorentz Equation may be understood in a simple way by comparing classical electromagnetism and the photonic description of light provided by classical relativistic kinematics. The method used may be described as `inverse correspondence' since quantum phenomena become apparent on considering the low photon number density limit of classical electromagnetism. Generalisation to massive particles leads to the Klein--Gordon and Schr\"{o}dinger Equations. The difference between the quantum wavefunction of the photon and a classical electromagnetic wave is discussed in some detail.Comment: 14 pages, no figures, no table
    • …
    corecore