7 research outputs found

    Impact of Betamethasone Pretreatment on Engrafment of Cord Blood-Derived Hematopoietic Stem Cells

    Get PDF
    Hematopoietic stem cell (HSC) transplantation is crucial to cure hematologic malignancies. Umbilical cord blood (UCB) is a source of stem cells, but 90% of UCB units are discarded due to low cellularity. Improving the engraftment capacities of CD34 + stem cells would allow the use of UCB that were so far rejected. Betamethasone induces long-term transcriptomic and epigenomic changes in immune cells through glucocorticoid receptor. We hypothesize that discarded UCB could be used owing to improvements induced by betamethasone. Isolated CD34 + HSC from UCB were exposed to the synthetic glucocorticoids betamethasone and fluticasone for 20 h, and cell phenotype was determined before transplantation. NSG mice were sub-lethally irradiated (1 Gy or 2 Gy) 6 h before intravenously transferring 2-5 × 10 5 CD34 + HSC. The peripheral blood engraftment levels and the leukocyte subsets were followed up for 20 weeks using flow cytometry. At end point, the engraftment and leukocyte subsets were determined in the spleen and bone marrow. We demonstrated that betamethasone has surprising effects in recovering immune system homeostasis. Betamethasone and fluticasone increase CXCR4 and decrease HLA class II and CD54 expression in CD34 + HSCs. Both glucocorticoids-exposed cells showed a similar engraftment in 2 Gy-irradiated NSG mice. Interestingly, betamethasone-exposed cells showed enhanced engraftment in 1 Gy-irradiated NSG mice, with a trend to increase regulatory T cell percentage when compared to control. Betamethasone induces alterations in CD34 + HSCs and improve the engraftment, leading to a faster immune system recovery, which will contribute to engrafted cells survival

    Prenatal Betamethasone interferes with immune system development and alters target cells in autoimmune diabetes

    Get PDF
    Altres ajuts: This work has been co-financed with the European Regional Development funds (FEDER), and supported by the Deutsche Forschungsgemeinschaft (KFO296). CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM) is an initiative from Instituto de Salud Carlos III. SRF is supported by the Agency for Management of University and Research Grants (AGAUR) of the Generalitat de Catalunya.Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone -a synthetic glucocorticoid given to women at risk of preterm delivery- may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target β-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased β-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and β-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D

    Partial remission and early stages of pediatric type 1 diabetes display immunoregulatory changes. A pilot study

    Get PDF
    Altres ajuts: This work has been funded by the European Regional Development funds (FEDER), and by DiabetesCero Foundation. CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM) is an initiative from Instituto de Salud Carlos III (Spain). SRF is supported by the Agency for Management of University and Research Grants (AGAUR) of the Generalitat de Catalunya.Type 1 diabetes (T1D) is a chronic metabolic disease of unknown etiology that results from β-cell destruction. The onset of the disease, which arises after a long asymptomatic period of autoimmune attack, may be followed by a relapsing and remitting progression, a phenomenon that is most evident during the partial remission phase (PR). This stage lasts for a few months, shows minor requirements of exogenous insulin and could be explained by a recovery of immunological tolerance. This study aims to identify new biomarkers at early stages of pediatric T1D that reflect immunoregulatory changes. To that end, pediatric patients with T1D (n = 52) and age-related control subjects (n = 30) were recruited. Immune response-related molecules and lymphocyte subsets were determined starting at T1D onset and until the second year of progression. Results showed that circulating TGF-β levels decreased during PR, and that betatrophin concentration was increased in all the considered stages without differing among studied checkpoints. Moreover, an increase of regulatory T, B and NK subsets was found during T1D progression, probably reflecting an attempt to restore self-tolerance. By contrast, a reduction in monocyte levels was observed at the early stages of diabetes. The results reveal significant changes in immunological parameters during the different early stages of T1D in children, which could ultimately serve as potential biomarkers to characterize the progression of T1D

    NK Cell Subsets Changes in Partial Remission and Early Stages of Pediatric Type 1 Diabetes

    Get PDF
    Type 1 diabetes (T1D) is a chronic metabolic disease characterized by the autoimmune destruction of β-cells in the pancreatic islets. T1D is preceded by islet-specific inflammation led by several immune cells. Among them, natural killer (NK) cells are emerging as important players in T1D development. Human NK cells are characterized by CD56 and CD16 expression, which allows classifying NK cells into four subsets: 1) CD56 dim CD16 + or effector NK cells (NK); 2) CD56 bright CD16 − or regulatory NK cells (NK); 3) intermediate CD56 bright CD16 + NK cells; and 4) CD56 dim CD16 − NK cells, whose function is not well determined. Since many studies have shown that T1D progression is associated with changes in various immune cell types, we hypothesize that the kinetics of NK cell subsets in the blood could correlate with different stages of T1D. To that aim, pediatric patients newly diagnosed with T1D were recruited, and peripheral NK cell subsets were analyzed by flow cytometry at several disease checkpoints: disease onset, partial remission (PR), 8 months (for non-remitters), and 12 months of progression. Our results showed that total NK cells and their four subsets are altered at the early stages of T1D. A decrease in the counts and percentage of total NK cells and NK cells at the different disease stages was found when compared to controls. These results suggest the extravasation of these cells into the islets at disease onset, which is maintained throughout the follow-up. By contrast, NK cells increased during the early stages after T1D onset, and both intermediate NK cells and CD56 dim CD16 - NK cells diminished at the PR stage, which might reflect the immunoregulatory attempts and could be candidate biomarkers for this stage. Also, CD56 dim CD16 - NK cells increased during T1D progression. Finally, changes in CD16 expression were identified in the different T1D stages, highlighting a CD16 expression reduction in total NK cells and NK cells 1 year after diagnosis. That may reflect a state of exhaustion after multiple cell-to-cell interactions. Altogether, our preliminary data provide a longitudinal picture of peripheral NK cell subpopulations during the different T1D stages, which could be potential candidate biomarkers indicators of disease progression

    Preclinical evaluation of antigen-specific nanotherapy based on phosphatidylserine-liposomes for type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing cells. Due to the ability of apoptotic cells clearance to induce tolerance, we previously generated liposomes rich in phophatidylserine (PS) -a feature of apoptotic cells- loaded with insulin peptides to mimic apoptotic beta-cells. PS-liposomes arrested autoimmunity in experimental T1D through the induction of tolerance. The aim of this study was to investigate the potential of several peptides from different T1D autoantigens encapsulated in (PS)-liposomes for T1D prevention and to assess its safety. T1D autoantigens (Insulin, C-peptide, GAD65 and IA2) were encapsulated in PS-liposomes. Liposomes were administered to the 'gold-standard' model for the study of autoimmune T1D, the Non-Obese Diabetic mouse, that spontaneously develop the disease. Safety and toxicity of liposomes were also determined. Only PS-liposomes encapsulating insulin peptides decrease T1D incidence in the Non-Obese Diabetic mouse model. Disease prevention correlates with a decrease in the severity of the autoimmune islet destruction driven by leukocytes. PS-liposomes neither showed toxic effect nor secondary complications. Among the here referred autoantigens, insulin peptides are the best candidates to be encapsulated in liposomes, like an artificial apoptotic cell, for the arrest of autoimmunity in T1D in a safe manner

    Prenatal Betamethasone interferes with immune system development and alters target cells in autoimmune diabetes

    No full text
    Altres ajuts: This work has been co-financed with the European Regional Development funds (FEDER), and supported by the Deutsche Forschungsgemeinschaft (KFO296). CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM) is an initiative from Instituto de Salud Carlos III. SRF is supported by the Agency for Management of University and Research Grants (AGAUR) of the Generalitat de Catalunya.Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone -a synthetic glucocorticoid given to women at risk of preterm delivery- may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target β-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased β-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and β-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D

    Partial remission and early stages of pediatric type 1 diabetes display immunoregulatory changes. A pilot study

    No full text
    Altres ajuts: This work has been funded by the European Regional Development funds (FEDER), and by DiabetesCero Foundation. CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM) is an initiative from Instituto de Salud Carlos III (Spain). SRF is supported by the Agency for Management of University and Research Grants (AGAUR) of the Generalitat de Catalunya.Type 1 diabetes (T1D) is a chronic metabolic disease of unknown etiology that results from β-cell destruction. The onset of the disease, which arises after a long asymptomatic period of autoimmune attack, may be followed by a relapsing and remitting progression, a phenomenon that is most evident during the partial remission phase (PR). This stage lasts for a few months, shows minor requirements of exogenous insulin and could be explained by a recovery of immunological tolerance. This study aims to identify new biomarkers at early stages of pediatric T1D that reflect immunoregulatory changes. To that end, pediatric patients with T1D (n = 52) and age-related control subjects (n = 30) were recruited. Immune response-related molecules and lymphocyte subsets were determined starting at T1D onset and until the second year of progression. Results showed that circulating TGF-β levels decreased during PR, and that betatrophin concentration was increased in all the considered stages without differing among studied checkpoints. Moreover, an increase of regulatory T, B and NK subsets was found during T1D progression, probably reflecting an attempt to restore self-tolerance. By contrast, a reduction in monocyte levels was observed at the early stages of diabetes. The results reveal significant changes in immunological parameters during the different early stages of T1D in children, which could ultimately serve as potential biomarkers to characterize the progression of T1D
    corecore