25 research outputs found

    Functional interface micromechanics of 11 en-bloc retrieved cemented femoral hip replacements

    Get PDF
    Contains fulltext : 88556.pdf (publisher's version ) (Open Access)BACKGROUND AND PURPOSE: Despite the longstanding use of micromotion as a measure of implant stability, direct measurement of the micromechanics of implant/bone interfaces from en bloc human retrievals has not been performed. The purpose of this study was to determine the stem-cement and cement-bone micromechanics of functionally loaded, en-bloc retrieved, cemented femoral hip components. METHODS: 11 fresh frozen proximal femurs with cemented implants were retrieved at autopsy. Specimens were sectioned transversely into 10-mm slabs and fixed to a loading device where functional torsional loads were applied to the stem. A digital image correlation technique was used to document micromotions at stem-cement and cement-bone interfaces during loading. RESULTS: There was a wide range of responses with stem-cement micromotions ranging from 0.0006 mm to 0.83 mm (mean 0.17 mm, SD 0.29) and cement-bone micromotions ranging from 0.0022 mm to 0.73 mm (mean 0.092 mm, SD 0.22). There was a strong (linear-log) inverse correlation between apposition fraction and micromotion at the stem-cement interface (r(2) = 0.71, p < 0.001). There was a strong inverse log-log correlation between apposition fraction at the cement-bone interface and micromotion (r(2) = 0.85, p < 0.001). Components that were radiographically well-fixed had a relatively narrow range of micromotions at the stem-cement (0.0006-0.057 mm) and cement-bone (0.0022-0.029 mm) interfaces. INTERPRETATION: Minimizing gaps at the stem-cement interface and encouraging bony apposition at the cement-bone interface would be clinically desirable. The cement-bone interface does not act as a bonded interface in actual use, even in radiographically well-fixed components. Rather, the interface is quite compliant, with sliding and opening motions between the cement and bone surfaces.1 juni 201

    The use of race, ethnicity and ancestry in human genetic research

    Get PDF
    Post-Human Genome Project progress has enabled a new wave of population genetic research, and intensified controversy over the use of race/ethnicity in this work. At the same time, the development of methods for inferring genetic ancestry offers more empirical means of assigning group labels. Here, we provide a systematic analysis of the use of race/ethnicity and ancestry in current genetic research. We base our analysis on key published recommendations for the use and reporting of race/ethnicity which advise that researchers: explain why the terms/categories were used and how they were measured, carefully define them, and apply them consistently. We studied 170 population genetic research articles from high impact journals, published 2008–2009. A comparative perspective was obtained by aligning study metrics with similar research from articles published 2001–2004. Our analysis indicates a marked improvement in compliance with some of the recommendations/guidelines for the use of race/ethnicity over time, while showing that important shortfalls still remain: no article using ‘race’, ‘ethnicity’ or ‘ancestry’ defined or discussed the meaning of these concepts in context; a third of articles still do not provide a rationale for their use, with those using ‘ancestry’ being the least likely to do so. Further, no article discussed potential socio-ethical implications of the reported research. As such, there remains a clear imperative for highlighting the importance of consistent and comprehensive reporting on human populations to the genetics/genomics community globally, to generate explicit guidelines for the uses of ancestry and genetic ancestry, and importantly, to ensure that guidelines are followed

    HLA: what's in a name?

    No full text

    Early cementing does not increase debond energy of grit blasted interfaces

    No full text
    A fracture mechanics based approach was used to determine the debond energy or fracture toughness of the stem-cement interface for a variety of conditions. The goals of the study were to determine if early cementing of stems increased the debond energy of grit blasted stem-cement interfaces and if debond energy was dependent on mold type. Early (2 min) and late (6 min) times of cementation were considered for two different grit blasted surface finishes (16 and 60 grit, Ra=5.7 or 2.3 microm). Specimen fabrication was performed using a relatively simple, unconstrained rectangular mold and a mold that more closely simulated in vivo conditions. The rectangular mold was used with all components at room temperature whereas the in vivo simulated mold had a body that resembled the femoral canal in shape and was warmed to body temperature. Early cementing did not increase the debond energy using the in vivo simulated mold. Extensive porosity was found at the interface, and porosity had a strong negative effect on debond energy. When the simpler, rectangular mold was used, early cementing did result in higher debond energies, but few voids were found at the interface. It appears that porosity at the interface was the major factor affecting the debond energy. The results from this study do not support the concept that improved stem-cement interface strength can be obtained by application of the cement while it is in a low viscosity state

    Arthroscopic Untethering of the Fat Pad of the Knee: Release or Resection of the Infrapatellar Plica (Ligamentum Mucosum) and Related Structures for Anterior Knee Pain

    No full text
    Anterior knee pain (AKP), a multifactorial symptom complex, can be successfully treated surgically. A specific diagnosis often cannot be made, but the pain is linked to an unrecognized common factor in most patients: the mechanical behavior of the non-isometric contents of the anterior compartment of the knee—the fat pad (FP) and infrapatellar plica (IPP). The objective of this presentation is to describe an effective arthroscopic technique that treats AKP by addressing this common factor. The operation consists of release or resection of the IPP, or ligamentum mucosum, which tethers the FP. These highly innervated tissues act together as a hydraulic shock absorber, filling the anterior compartment. They stretch and deform at the extremes of knee motion because of constraint centrally by the non-isometric IPP. These dynamic changes in shape are eliminated when the plica is released or resected. Pain perception is from perturbed nociceptive nerves: pain relief results from de-tensioning these contained nerves by untethering the fat pad. Ascribing pain causation is problematic because morphologic change, such as inflammation, fibrosis, or contracture of these structures, is only present in a minority of cases. Nonetheless, AKP is both physically linked to these central, pain-sensitive structures and relieved by this operation
    corecore