52 research outputs found

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Decreased production of TNF-alpha by lymph node cells indicates experimental autoimmune encephalomyelitis remission in Lewis rats

    Full text link
    Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-&#947; and TNF-&#945;, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-&#947; and TNF-&#945; by TGF-&#946;. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-&#945; and IFN-&#947; production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-&#945; levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link

    Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence

    No full text
    OBJECTIVE: We evaluated the effects of two consecutive concussive injuries on brain energy metabolism and N-acetylaspartate (NAA) to investigate how the temporal interval between traumatic events influences overall injury severity. METHODS: Rats were injured to induce diffuse traumatic brain injury (TBI) (mild, 450 g/1 m; severe, 450 g/2 m). In two groups, two mild TBIs were delivered in 3- or 5-day intervals. Three additional animal groups were used: single mild TBI, single severe TBI, and sham. All animals were killed 48 hours postinjury. Adenosine 5'-triphosphate (ATP), adenosine diphosphate, and NAA concentrations were analyzed with high-performance liquid chromatography on deproteinized whole brain extracts. RESULTS: In control animals, the NAA concentration was 9.17 +/- 0.38 micromol/g wet weight, the ATP concentration was 2.25 +/- 0.21 micromol/g wet weight, and the ATP-to-adenosine diphosphate ratio was 9.38 +/- 1.23. These concentrations decreased to 6.68 +/- 1.12 micromol/g wet weight, 1.68 +/- 0.24 micromol/g wet weight, and 6.10 +/- 1.21 micromol/g wet weight, respectively, in rats that received two mild TBIs at a 5-day interval (P 0.01; not different from results in rats with single mild TBI). When a second TBI was delivered after 3 days, the NAA concentration was 3.86 +/- 0.53 micromol/g wet weight, the ATP concentration was 1.11 +/- 0.18 micromol/g wet weight, and the ATP-to-adenosine diphosphate ratio was 2.64 +/- 0.43 (P 0.001 versus both controls and 3-day interval; not different from rats receiving a single severe TBI). CONCLUSION: The biochemical modification severity in double TBI is dependent on the interval between traumatic events, which demonstrates the metabolic state of the vulnerable brain after mild TBI. These data support the hypothesis of the application of proton magnetic resonance spectroscopy to measure NAA as a possible tool to monitor the full recovery of brain metabolic functions in the clinical setting, particularly in sports medicine

    Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats.

    No full text
    OBJECTIVE: The combined effect of traumatic brain injury (TBI) and secondary insult on biochemical changes of cerebral tissue is not well known. For this purpose, we studied the time-course changes of parameters reflecting ROS-mediated oxidative stress and modifications of cell energy metabolism determined in rats subjected to cerebral insult of increasing severity. METHODS: Rats were divided into four groups: 1) sham-operated, 2) subjected to 10 minutes of hypoxia and hypotension (HH), 3) subjected to severe diffuse TBI, and 4) subjected to severe diffuse TBI + HH. Rats were killed at different times after injury, and analyses of malondialdehyde, ascorbate, high-energy phosphates, nicotinic coenzymes, oxypurines, nucleosides, and N-acetylaspartate (NAA) were made by high-performance liquid chromatography on whole-brain tissue extracts. RESULTS: Data indicated a close relationship between degree of oxidative stress and severity of brain insult, as evidenced by the highest malondialdehyde values and lowest ascorbate levels in rats subjected to TBI + HH. Similarly, modifications of parameters related to cell energy metabolism were modulated by increasing severity of brain injury, as demonstrated by the lowest values of energy charge potential, nicotinic coenzymes, and NAA and the highest levels of oxypurines and nucleosides recorded in TBI + HH rats. Both the intensity of oxidative stress-mediated cerebral damage and perturbation of energy metabolism were minimally affected in rats subjected to HH only. CONCLUSION: These results showed that the severity of brain insult can be graded by measuring biochemical modifications, specifically, reactive oxygen species-mediated damage, energy metabolism depression, and NAA, thereby validating the rodent model of closed-head diffuse TBI coupled with HH and proposing NAA as a marker with diagnostic relevance to monitor the metabolic state of postinjured brain

    Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats

    No full text
    OBJECTIVE: The combined effect of traumatic brain injury (TBI) and secondary insult on biochemical changes of cerebral tissue is not well known. For this purpose, we studied the time-course changes of parameters reflecting ROS-mediated oxidative stress and modifications of cell energy metabolism determined in rats subjected to cerebral insult of increasing severity. METHODS: Rats were divided into four groups: 1) sham-operated, 2) subjected to 10 minutes of hypoxia and hypotension (HH), 3) subjected to severe diffuse TBI, and 4) subjected to severe diffuse TBI + HH. Rats were killed at different times after injury, and analyses of malondialdehyde, ascorbate, high-energy phosphates, nicotinic coenzymes, oxypurines, nucleosides, and N-acetylaspartate (NAA) were made by high-performance liquid chromatography on whole-brain tissue extracts. RESULTS: Data indicated a close relationship between degree of oxidative stress and severity of brain insult, as evidenced by the highest malondialdehyde values and lowest ascorbate levels in rats subjected to TBI + HH. Similarly, modifications of parameters related to cell energy metabolism were modulated by increasing severity of brain injury, as demonstrated by the lowest values of energy charge potential, nicotinic coenzymes, and NAA and the highest levels of oxypurines and nucleosides recorded in TBI + HH rats. Both the intensity of oxidative stress-mediated cerebral damage and perturbation of energy metabolism were minimally affected in rats subjected to HH only. CONCLUSION: These results showed that the severity of brain insult can be graded by measuring biochemical modifications, specifically, reactive oxygen species-mediated damage, energy metabolism depression, and NAA, thereby validating the rodent model of closed-head diffuse TBI coupled with HH and proposing NAA as a marker with diagnostic relevance to monitor the metabolic state of postinjured brain

    Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats

    No full text
    OBJECTIVE: The combined effect of traumatic brain injury (TBI) and secondary insult on biochemical changes of cerebral tissue is not well known. For this purpose, we studied the time-course changes of parameters reflecting ROS-mediated oxidative stress and modifications of cell energy metabolism determined in rats subjected to cerebral insult of increasing severity. METHODS: Rats were divided into four groups: 1) sham-operated, 2) subjected to 10 minutes of hypoxia and hypotension (HH), 3) subjected to severe diffuse TBI, and 4) subjected to severe diffuse TBI + HH. Rats were killed at different times after injury, and analyses of malonclialclehyde, ascorbate, high-energy phosphates, nicotinic co-enzymes, oxypurines, nucleosides, and 4-acetylaspartate (NAA) were made by high-performance liquid chromatography on whole-brain tissue extracts. RESULTS: Data indicated a close relationship between degree of oxidative stress and severity of brain insult, as evidenced by the highest malondialdehyde values and lowest ascorbate levels in rats subjected to TBI + HH. Similarly, modifications of parameters related to cell energy metabolism were modulated by increasing severity of brain injury, as demonstrated by the lowest values of energy charge potential, nicotinic coenzymes, and NAA and the highest levels of oxypurines and nucleosides recorded in TBI + HH rats. Both the intensity of oxidative stress-mediated cerebral damage and perturbation of energy metabolism were minimally affected in rats subjected to HH only. CONCLUSION: These results showed that the severity of brain insult can be graded by measuring biochemical modifications, specifically, reactive oxygen species-mediated damage, energy metabolism depression, and NAA, thereby validating the rodent model of closed-head diffuse TBI coupled with HH and proposing NAA as a marker with diagnostic relevance to monitor the metabolic state of post-injured brain
    • 

    corecore