1,096 research outputs found
On the non-relativistic limit of charge conjugation in QED
Even if at the level of the non-relativistic limit of full QED, C is not a
symmetry, the limit of this operation does exist for the particular case when
the electromagnetic field is considered a classical external object coupled to
the Dirac field. This result extends the one obtained when fermions are
described by the Schroedinger-Pauli equation. We give the expressions for both
the C matrix and the operator for galilean electrons and positrons
interacting with the external electromagnetic field. The result is relevant in
relation to recent experiments with antihydrogen.Comment: 7 page
Quantum-gate implementation in permanently coupled AF spin rings without need of local fields
We propose a scheme for the implementation of quantum gates which is based on
the qubit encoding in antiferromagnetic molecular rings. We show that a proper
engineering of the intercluster link would result in an effective coupling that
vanishes as far as the system is kept in the computational space, while it is
turned on by a selective excitation of specific auxiliary states. These are
also shown to allow the performing of single- and two-qubit gates without an
individual addressing of the rings by means of local magnetic fields.Comment: To appear in Physical Review Letter
The First Cold Antihydrogen
Antihydrogen, the atomic bound state of an antiproton and a positron, was
produced at low energy for the first time by the ATHENA experiment, marking an
important first step for precision studies of atomic antimatter. This paper
describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and
Related Topics, to be published in NIM
Molecular engineering of antiferromagnetic rings for quantum computation
The substitution of one metal ion in a Cr-based molecular ring with dominant
antiferromagnetic couplings allows to engineer its level structure and
ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means
of low-temperature specific-heat and torque-magnetometry measurements, thus
determining the microscopic parameters of the corresponding spin Hamiltonian.
The energy spectrum and the suppression of the leakage-inducing S-mixing render
the Cr7Ni molecule a suitable candidate for the qubit implementation, as
further substantiated by our quantum-gate simulations.Comment: To appear in Physical Review Letter
First Production and Detection of Cold Antihydrogen Atoms
The ATHENA experiment recently produced the first atoms of cold antihydrogen.
This paper gives a brief review of how this was achieved.Comment: Invited talk at Int. Conf. on Low Energy Antiprotons 2003 (LEAP03),
to be published in NIM
Ontologies, Mental Disorders and Prototypes
As it emerged from philosophical analyses and cognitive research, most concepts exhibit typicality effects, and resist to the efforts of defining them in terms of necessary and sufficient conditions. This holds also in the case of many medical concepts. This is a problem for the design of computer science ontologies, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. However, the need of representing concepts in terms of typical traits concerns almost every domain of real world knowledge, including medical domains. In particular, in this article we take into account the domain of mental disorders, starting from the DSM-5 descriptions of some specific mental disorders. On this respect, we favor a hybrid approach to the representation of psychiatric concepts, in which ontology oriented formalisms are combined to a geometric representation of knowledge based on conceptual spaces
Magnetic Susceptibility of Multiorbital Systems
Effects of orbital degeneracy on magnetic susceptibility in paramagnetic
phases are investigated within a mean-field theory. Under certain crystalline
electric fields, the magnetic moment consists of two independent moments, e.g.,
spin and orbital moments. In such a case, the magnetic susceptibility is given
by the sum of two different Curie-Weiss relations, leading to deviation from
the Curie-Weiss law. Such behavior may be observed in d- and f-electron systems
with t_{2g} and Gamma_8 ground states, respectively. As a potential application
of our theory, we attempt to explain the difference in the temperature
dependence of magnetic susceptibilities of UO_2 and NpO_2.Comment: 4 pages, 3 figure
NMR as a probe of the relaxation of the magnetization in magnetic molecules
We investigate the time autocorrelation of the molecular magnetization
for three classes of magnetic molecules (antiferromagnetic rings, grids and
nanomagnets), in contact with the phonon heat bath. For all three classes, we
find that the exponential decay of the fluctuations of , associated with
the irreversible exchange of energy with the heat bath, is characterized by a
single characteristic time for not too high temperature and
field . This is reflected in a nearly single-lorentzian shape of the
spectral density of the fluctuations. We show that such fluctuations are
effectively probed by NMR, and that our theory explains the recent
phenomenological observation by Baek et al. (PRB70, 134434) that the
Larmor-frequency dependence of data in a large number of AFM rings fits
to a single-lorentzian form.Comment: Published as Phys. Rev. Letters 94, 077203 (2005) in slightly reduced
for
A constraint on antigravity of antimatter from precision spectroscopy of simple atoms
Consideration of antigravity for antiparticles is an attractive target for
various experimental projects. There are a number of theoretical arguments
against it but it is not quite clear what kind of experimental data and
theoretical suggestions are involved. In this paper we present straightforward
arguments against a possibility of antigravity based on a few simple
theoretical suggestions and some experimental data. The data are: astrophysical
data on rotation of the Solar System in respect to the center of our galaxy and
precision spectroscopy data on hydrogen and positronium. The theoretical
suggestions for the case of absence of the gravitational field are: equality of
electron and positron mass and equality of proton and positron charge. We also
assume that QED is correct at the level of accuracy where it is clearly
confirmed experimentally
- …
