29 research outputs found

    Electrodialytic Removal of Cadmium from Brackish Water: Effects of Operating Parameters

    Get PDF
    The continuous increase of environmental regulations make interesting to find effective and efficient methods for processing effluents containing metal ions. This research focuses on cadmium removal from brackish water by an electro-membrane process: The electrodialysis. Experiments were carried out on synthetic brackish water solutions and using a laboratory scale electrodialysis system. The influence of several parameters on process efficiency was investigated. The efficiency of this process was assessed by the determination of five parameters: The demineralization rate, the removal rate and the transport flux of cadmium, the current efficiency and the specific power consumption. The applied voltage, the feed flow rate, the pH and cadmium initial concentration of the feed solution have a significant effect on the process efficiency and mainly on the cadmium transfer from dilute to concentrate compartment. In contrast, feed ionic strength seems to affect only the SPC and not the R(Cd)

    The Coffee Residues and the Esparto Fibers as a Lignocellulosic Material for Removal of Dyes from Wastewater by Adsorption

    Get PDF
    Biosorption onto lignocellulosic products such as coffee residues and esparto fibers in natural and modified forms have been identified as a potential alternative to the existing biosorbents applied for dye removal from wastewater. The efficiency of each material has been discussed with respect to the operating conditions and the chemical modifications. The investigated thermodynamics and kinetics studies were exposed also in terms of equilibrium isotherms and fitted kinetic models. Moreover, the crucial role of the chemical structures of the cellulosic fibers as an affecting factor on the mechanism of the adsorption process was evaluated and compared. The different treatment methods showed an improvement in terms of removal and maximum adsorption capacity. In fact, in some cases the removal capacity can be increased to 99% and the maximum adsorption capacity can reach 67 mg/g. On the other hand, the different investigations showed that the study data fitted to the known model such as Langmuir isotherm and pseudo-second-order kinetic

    Cellulose Acetate Membrane Preparation for Wastewater Treatment

    Get PDF
    For a long time, humans have used cellulose, as a natural, renewable, and transformative polymer, for scientific development to create new technologies. Cellulose is the most abundant biopolymer on Earth, accounting for more than 50% of terrestrial biomass. For this reason, the treated cellulose (cellulose acetate (CA)) was used in the membrane preparation for water desalination. However, membrane preparation has recently attracted big attention of several research groups. In this case, cellulose acetate (CA), as an inexpensive hydrophilic biopolymer, was chosen as a polymer for preparing the membranes via the inversion phase, since it offers an efficient purification benefit with low energy consumption and less cost. The purpose of this chapter is to describe the various types of membrane preparation based on cellulose acetate, with pathogens, bacteria, and heavy metal (cadmium), and the applications of these membranes in the treatment of contaminated water, to ensure a clean water supply for both human and industrial uses

    New ion exchange membrane derived from sulfochlorated polyether sulfone for electrodialysis desalination of brackish water

    Get PDF
    The purpose of this work is to study the desalination of brackish water using a new ion exchange membrane, made from sulfochlorated polyethersulfone (Cl-PES), and crosslinked using aminated polyethersulfone (NH2-PES) as a crosslinking reagent. This membrane, named ClNH2 membrane, has been obtained by reaction between Cl-PES with 1.3 SO2Cl groups per monomer unit and 0.2 equivalent amount of NH2-PES. ClNH2 membrane has been characterized in terms of contact angle, transport number, intrinsic conductivity, and water uptake (as a function of temperature). Electrodialysis performances of the newly synthetized membranes have been measured using an electrodialysis cell at a laboratory scale and compared to commercial membranes. All the experiments have been performed using synthetic brackish water solutions prepared from sodium chloride salts with different concentrations (varying from 0.5 to 5.0 g/L). The concentration of different water samples obtained has been found to be below the amount recommended by the World Health Organization (WHO) for drinking water.ERAS Labo; World Health Organizatio

    Exploring the effect of iron metal-organic framework particles in polylactic acid membranes for the azeotropic separation of organic/organic mixtures by pervaporation

    Get PDF
    A microporous carboxylate metal-organic framework MIL-100 Fe was prepared as submicron particles by microwave-assisted hydrothermal synthesis (Fe-MOF-MW). This product was explored, for the first time, for the preparation of polylactic acid (PLA) mixed matrix membranes. The produced MOF was characterised by powder X-ray diffraction (PXRD), environmental scanning electron microscopy (ESEM) as well as by thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. The effect of different Fe-MOF-MW concentrations (0.1 and 0.5 wt%) on the membrane properties and performance were evaluated. These membranes were used in the pervaporation process for the separation of methanol/methyl tert-butyl-ether mixtures at the azeotropic point. The influence of the feed temperature and vacuum pressure on the membrane performance was evaluated and the results were compared with PLA pristine membranes. Moreover, the produced membranes have been characterised in terms of morphology, MOF dispersion in the polymeric membrane matrix, wettability, thickness, mechanical resistance and swelling propensity. The presence of Fe-MOF-MW was found to have a beneficial effect in improving the selectivity of mixed matrix membranes towards methanol at both concentrations. The highest selectivity was obtained for the PLA membranes embedded with 0.5 wt% of Fe-MOF-MW and tested at the temperature of 25 C and vacuum pressure of 0.09 mbar

    Characterization and modeling of the polarization phenomenon to describe salt rejection by nanofiltration

    No full text
    In this work, dead-end filtration was applied to the nanofiltration of synthetic ionic solutions. In order to study the phenomenon of polarization in the boundary layer, we chose NaCl, CaCl2 and Na2(SO4) solutions to pH = 6.8 which concentrations varies from 0.3 to 1.5 g L−1 and the filtration pressure varied from 6 to 16 bar. In this study, the results of these experiments show a correlation between the initial concentration of the solution and the pressure applied with the polarization. The polarization intensifies for the high concentrations and pressures. The ionic balance between the microscopic zone of polarization and the macroscopic state of the solution is described by the following key equation of the model:

    Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration

    No full text
    This study investigates the potential use of activated carbon prepared from coffee waste (CW) as an adsorbent for the removal of congo red dye from aqueous solution. The oxygen-containing groups of activated carbon prepared from CW play an important role in dyes ions adsorption onto activated carbon prepared from CW. The activated carbon is characterized by scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. Adsorption experiments were carried out as batch studies at different contact time, pH, and initial dye concentration. The dye adsorption equilibrium was attained after 120 min of contact time. Removal of dye in acidic solutions was better than in basic solutions. The adsorption of dye increased with increasing initial dye concentration. The equilibrium data were revealed that Langmuir model was more suitable to describe the congo red adsorption and demonstrated excellent reusability potential with desorption greater than 90% throughout six consecutive adsorption–desorption cycles. Experimental data founded that kinetics followed a pseudo-second-order equation. Thermodynamic study showed that the adsorption was a spontaneous and exothermic process. According to the FTIR analyses, hydrogen bonding and electrostatic interactions between dyes and oxygen-containing functional groups on activated carbon prepared from CW are dominant mechanisms for dye adsorption

    Dye removal using keggin polyoxometalates assisted ultrafi ltration: characterization and UV visible study

    No full text
    To improve dye retention, there is a concurrent interest in the development and optimization of an alternative and promising method for the dye recovery in aqueous solutions. In this regard, considerable attention was paid to the polyoxometalates (POMs) assisted ultrafiltration (POMAUF). The aim of the present study is to eliminate toluidine blue (TB) dye by ultrafiltration membrane using keggin polyoxometalates (POMs) as complexing agents. In the first step, the keggin polyoxometalates K3[PW12O40]∙6H2O (PW12) and K7 [PW11O39]∙14H2O (PW11) were prepared. Then, the obtained powders were characterized by X-ray diffraction and infrared spectroscopies. Afterwards, the removal of toluidine blue (TB) using polyoxometalates assisted ultrafiltration (POMAUF) was studied. Factors affecting the retention of dye and permeate flux such as transmembrane pressure, operating time, polyoxometalates concentration, ionic strength, surfactant and pH were investigated. All results of both compounds have been presented and discussed. The results reveal that the addition of POMs leads to an increase in dye retention from 11 to 95% for the PW12 and to 98% for the PW11. The results of this work have thus suggested the promising enhancement of ultrafiltration membrane selectivity for the dye removal using new complexing agents such as POMs in place of polyelectrolytes and surfactants
    corecore