106 research outputs found

    The effect of curved tips on the dynamics of composite rotor blades

    Get PDF
    In this paper, the dynamics of a tailored composite rotating blade with curved tips are investigated, with a view to improving the dynamic behaviour of the blade in flight. The blade tip is curved either in the out-of-plane or in the in-plane directions. The composite blade is modelled by using the exact beam formulation, and the cross-sectional properties of the blade are obtained using the variational asymptotic method. The resulting nonlinear partial differential equations are discretised using a time-space scheme, and the stationary and rotating frequencies of the blade are obtained from the eigenvalues of the linearised system. Three case studies are considered here each of them representing one of the main elastic couplings that might happen in a composite blade. These three elastic couplings are the flap-twist, lag-twist, and extension-twist couplings. All these couplings are very important in the blade design as they can affect the twist and hence the dynamics of the blade. The blade tip length and curvature value are two main parameters that this paper is focused on. It is shown that the curved tip of the blade affects the blade frequencies by adding extra couplings, and therefore could be used as a potential morphing concept for tuning the frequencies, enhancing the aeroelastic stability or performance of the blade in flight

    Development of Fault Diagnosis and Fault Tolerant Control Algorithms with Application to Unmanned Systems

    Get PDF
    Unmanned vehicles have been increasingly employed in real life. They include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned spacecrafts, and unmanned underwater vehicles (UUVs). Unmanned vehicles like any other autonomous systems need controllers to stabilize and control them. On the other hand unmanned systems might subject to different faults. Detecting a fault, finding the location and severity of it, are crucial for unmanned vehicles. Having enough information about a fault, it is needed to redesign controller based on post fault characteristics of the system. The obtained controlled system in this case can tolerate the fault and may have a better performance. The main focus of this thesis is to develop Fault Detection and Diagnosis (FDD) algorithms, and Fault Tolerant Controllers (FTC) to increase performance, safety and reliability of various missions using unmanned systems. In the field of unmanned ground vehicles, a new kinematical control method has been proposed for the trajectory tracking of nonholonomic Wheeled Mobile Robots (MWRs). It has been experimentally tested on an UGV, called Qbot. A stable leader-follower formation controller for time-varying formation configuration of multiple nonholonomic wheeled mobile robots has also been presented and is examined through computer simulation. In the field of unmanned aerial vehicles, Two-Stage Kalman Filter (TSKF), Adaptive Two-Stage Kalman Filter (ATSKF), and Interacting Multiple Model (IMM) filter were proposed for FDD of the quadrotor helicopter testbed in the presence of actuator faults. As for space missions, an FDD algorithm for the attitude control system of the Japan Canada Joint Collaboration Satellite - Formation Flying (JC2Sat-FF) mission has been developed. The FDD scheme was achieved using an IMM-based FDD algorithm. The efficiency of the FDD algorithm has been shown through simulation results in a nonlinear simulator of the JC2Sat-FF. A fault tolerant fuzzy gain-scheduled PID controller has also been designed for a quadrotor unmanned helicopter in the presence of actuator faults. The developed FDD algorithms and fuzzy controller were evaluated through experimental application to a quadrotor helicopter testbed called Qball-X4

    Aeroelastic stability analysis of aircraft wings with initial curvature

    Get PDF
    In this study, the aeroelastic instability of a wing with an initial out-of-plane curvature is determined. The structural dynamics of the wing is modelled by using the geometrically exact beam equations, and the aerodynamic loads are determined using an incompressible unsteady aerodynamic model. The wing is considered to have initial out-of-plane curvature, and the effect of the curvature on the flutter velocity and flutter frequency of the wing is determined. Two curved wing cases are considered here. In the first case, the length of the wing is assumed to be constant and therefore, as the wing is curved, the projected area of the wing decreases. In the second case, the wing is assumed to have a constant projected area and therefore different curvature angles result from different wing lengths. When the wing is designed to have an initial out-of-plane curvature, the wing dynamics change, and therefore the aeroelastic stability of the curved wing is also affected. It is shown that as the initial curvature of the wing increases, initially the flutter velocity decreases but then increases, and finally a sudden jump occurs in the flutter velocity due to the change of the coupled modes contributing to flutter. Moreover, the flutter frequency also first decreases as the curvature of the wing increases, and then there is a sudden jump in the frequency, and from this point again the frequency decreases. Finally, results highlighting the importance of the initial curvature and the length of the curved segment on the stability velocity and frequency of the curved wing are presented

    The effect of non-conservative compressive force on the vibration of rotating composite blades

    Get PDF
    This paper investigates the effectiveness of a resonance avoidance concept for composite rotor blades featuring extension–twist elastic coupling. The concept uses a tendon, attached to the tip of the blade, to apply a proper amount of compressive force to tune the vibration behavior of the blade actively. The tendon is simulated by applying a non-conservative axial compressive force applied to the blade tip. The main load carrying part of the structure is the composite spar box, which has an antisymmetric layup configuration. The nonlinear dynamic behavior of the composite blade is modelled by using the geometrically exact fully intrinsic beam equations. The resulting nonlinear differential equations are discretized using a time–space scheme, and the stationary and rotating frequencies of the blade are obtained. It is observed that the proposed resonance avoidance mechanism is effective for tuning the vibration behavior of composite blades. The applied compressive force can shift the frequencies and the location at which the frequency veering take place. Furthermore, the compressive force can also cause the composite blade to get unstable depending on the layup ply angle. Finally, the results, highlighting the importance of compressive force and ply angle on the dynamic behavior of composite blades, are presented and discussed

    Elastomer-based skins for morphing aircraft applications: Effect of biaxial strain rates and prestretch

    Get PDF
    There is an emerging trend in the morphing aircraft research where two or more morphing degrees of freedom are used on a wing which leads to the concept of polymorphing. The skin of the morphing wing must be flexible in the morphing direction but stiff in other directions to withstand the aerodynamic loads and maintain the airfoil shape. Polymorphing changes the loadings profile (from uniaxial to biaxial) and increases the complexity of designing suitable morphing skins. Furthermore, elastomeric materials used on morphing wings are usually prestretched to prevent wrinkling and to increase their out-of-plane stiffness. This paper focuses on elastomeric morphing skins and it studies the effect of biaxial strain rates and prestretch ratios on important mechanical properties such as stiffness, hysteresis losses (%), and stress relaxations (%) from an experimental perspective. Three polymeric materials are considered: Latex, Oppo, and Ecoflex. This study provides a mechanical comparative understanding of the three polymers used in the morphing wing under biaxial loading (two morphing degrees of freedom)

    A Polymorphing Wing Capable of Span Extension and Variable Pitch

    Get PDF
    This paper presents the development of a novel polymorphing wing capable of Active Span morphing And Passive Pitching (ASAPP) for small UAVs. The span of an ASAPP wing can be actively extended by up to 25% to enhance aerodynamic efficiency, whilst its pitch near the wingtip can be passively adjusted to alleviate gust loads. To integrate these two morphing mechanisms into one single wing design, each side of the wing is split into two segments (e.g., inboard and outboard segments). The inboard segment is used for span extension whilst the outboard segment is used for passive pitch. The inboard segment consists of a main spar that can translate in the spanwise direction. Flexible skin is used to cover the inboard segment and maintain its aerodynamic shape. The skin transfers the aerodynamic loads to the main spar through a number of ribs that can slide on the main spar through linear plain bearings. A linear actuator located within the fuselage is used for span morphing. The inboard and outboard segments are connected by an overlapping spar surrounded by a torsional spring. The overlapping spar is located ahead of the aerodynamic center of the outboard segment to facilitate passive pitch. The aero-structural design, analysis, and sizing of the ASAPP wing are detailed here. The study shows that the ASAPP wing can be superior to the baseline wing (without morphing) in terms of aerodynamic efficiency, especially when the deformation of the flexible skin is minimal. Moreover, the passive pitching near the wingtip can reduce the root loads significantly, minimizing the weight penalty usually associated with morphing
    • …
    corecore