59 research outputs found

    Mirrors with Regular Hexagonal Segments

    Get PDF
    The point-spread function and emissivity are calculated for a mirror made from regular hexagonal segments of just a few different sizes. A mirror of this type has many similar segments, which is an advantage for manufacturing, and for an ~f/1 mirror with ≥1000 segments and ≥4 sizes of regular hexagons the increase in intersegment gap area is negligible. This result raises the possibility of making a mirror from very large numbers of identical small segments that are warped to the required figure

    Deep reinforcement learning from human preferences

    Full text link
    For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent's interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback

    Searching for collective behavior in a network of real neurons

    Get PDF
    Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.Comment: 24 pages, 19 figure

    Interactive hybrid approach to combine machine and human intelligence for personalized rehabilitation assessment

    Get PDF
    Automated assessment of rehabilitation exercises using machine learning has a potential to improve current rehabilitation practices. However, it is challenging to completely replicate therapist’s deci sion making on the assessment of patients with various physical conditions. This paper describes an interactive machine learning approach that iteratively integrates a data-driven model with ex pert’s knowledge to assess the quality of rehabilitation exercises. Among a large set of kinematic features of the exercise motions, our approach identifies the most salient features for assessment using reinforcement learning and generates a user-specific analysis to elicit feature relevance from a therapist for personalized rehabilita tion assessment. While accommodating therapist’s feedback on fea ture relevance, our approach can tune a generic assessment model into a personalized model. Specifically, our approach improves performance to predict assessment from 0.8279 to 0.9116 average F1-scores of three upper-limb rehabilitation exercises ( < 0.01). Our work demonstrates that machine learning models with feature selection can generate kinematic feature-based analysis as expla nations on predictions of a model to elicit expert’s knowledge of assessment, and how machine learning models can augment with expert’s knowledge for personalized rehabilitation assessment.info:eu-repo/semantics/publishedVersio

    Towards Automatic Face-to-Face Translation

    Full text link
    In light of the recent breakthroughs in automatic machine translation systems, we propose a novel approach that we term as "Face-to-Face Translation". As today's digital communication becomes increasingly visual, we argue that there is a need for systems that can automatically translate a video of a person speaking in language A into a target language B with realistic lip synchronization. In this work, we create an automatic pipeline for this problem and demonstrate its impact on multiple real-world applications. First, we build a working speech-to-speech translation system by bringing together multiple existing modules from speech and language. We then move towards "Face-to-Face Translation" by incorporating a novel visual module, LipGAN for generating realistic talking faces from the translated audio. Quantitative evaluation of LipGAN on the standard LRW test set shows that it significantly outperforms existing approaches across all standard metrics. We also subject our Face-to-Face Translation pipeline, to multiple human evaluations and show that it can significantly improve the overall user experience for consuming and interacting with multimodal content across languages. Code, models and demo video are made publicly available. Demo video: https://www.youtube.com/watch?v=aHG6Oei8jF0 Code and models: https://github.com/Rudrabha/LipGANComment: 9 pages (including references), 5 figures, Published in ACM Multimedia, 201
    • …
    corecore